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Summary 

 

Two metakaolins will be evaluated for use as supplementary cementitious 

materials in cement-based systems.  The metakaolins vary in their surface area (11.1 v. 

25.4 m2/g), but are quite similar in mineralogical composition.  Performance of 

metakaolin mixtures will be compared to control mixtures and to mixtures incorporating 

silica fume as partial replacement for cement at water-to-cementitious materials ratios of 

0.40, 0.50, and 0.60.  In this study, the early age properties of fresh concrete and the 

mechanical and durability properties of hardened concrete will be examined.  Early age 

evaluations will aim to determine the reactivity of metakaolin (heat of hydration) and its 

effect on mixture workability (slump, setting time, unit weight).  In addition, three types 

of shrinkage will be monitored in metakaolin-cement systems: chemical, autogenous, and 

free.  Compressive, tensile and flexural strength and elastic modulus will be measured at 

various concrete ages.  The influence of metakaolin addition on durability will be 

assessed through accelerated testing for sulfate resistance, expansion due to alkali-silica 

reaction, and through rapid chloride permeability measurements.   

To further quantify the underlying mechanisms of metakaolin's action, the 

microstructure of pastes will be examined.  Calcium hydroxide (CH) content will be 

determined using thermogravimetric analysis and verified using differential thermal 

analysis.  Surface area and pore size distribution will be evaluated via nitrogen 

xiv



adsorption.  These analyses should yield information about the pozzolanic reactivity of 

metakaolin, associated CH consumption and pore structure refinement, and resulting 

improvements in mechanical performance and durability of metakaolin-concretes. 

xv
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Chapter I 

Introduction 

 

Concrete is one of most extensively used construction materials in the world, with 

two billion tons placed worldwide each year [Mindess, 2003].  It is attractive in many 

applications because it offers considerable strength at a relatively low cost.  Concrete can 

generally be produced of locally available constituents, can be cast into a wide variety of 

structural configurations, and requires minimal maintenance during service.  However, 

environmental concerns, stemming from the high energy expense and CO2 emission 

associated with cement manufacture, have brought about pressures to reduce cement 

consumption through the use of supplementary materials [Mindess, 2003; Sabir, 2001]. 

Supplementary cementitious materials (SCMs) are finely ground solid materials 

that are used to replace part of the cement in a concrete mixture.  These materials react 

chemically with hydrating cement to form a modified paste microstructure.  In addition to 

their positive environmental impact, SCMs may improve concrete workability, 

mechanical properties, and durability.  SCMs may possess pozzolanic or latent hydraulic 

reactivity or a combination of these.  The term pozzolan refers to a silecious material, 

which, in finely divided form and in the presence of water, will react chemically with 

calcium hydroxide (CH1) to form cementitious compounds.  Pozzolans can be of natural 

                                                
1 Cement chemistry notation: 
A = Al2O3    C = CaO    F = Fe2O3    H = H2O    S = SiO2    � = SO3  



 2

or industrial origin.  Natural pozzolans include volcanic ash and diatomaceous earth, 

although pozzolans from industrial by-products are more commonly used today.  Fly ash 

(FA), the most extensively used SCM, is the inorganic, noncombustible residue of 

powdered coal after burning in power plants.  Silica fume (SF) is harvested from the 

effluent gases produced in the manufacture of silicon metal and alloys.  Latent hydraulic 

SCMs, like slag, react directly with water to form cementitious compounds.  Slags used 

in concrete come from the blast furnace production of iron from ore [Mindess, 2003; 

Sabir, 2001].     

Metakaolin (MK) is an SCM that conforms to ASTM C 618, Class N pozzolan 

specifications.  MK is unique in that it is not the by-product of an industrial process nor is 

it entirely natural; it is derived from a naturally occurring mineral and is manufactured 

specifically for cementing applications.  Unlike by-product pozzolans, which can have 

variable composition, MK is produced under carefully controlled conditions to refine its 

color, remove inert impurities, and tailor particle size [Brooks, 2001; Ding, 2002].  As 

such, a much higher degree of purity and pozzolanic reactivity can be obtained.  MK has 

great promise as an SCM, as it can improve many properties of concrete while also 

reducing cement consumption. 

This research evaluates the potential of two Georgia-produced metakaolins for use 

as supplementary cementitious materials.  The influence of metakaolin fineness is 

investigated and the performance of these particular metakaolins is compared to a 

commercial silica fume.  Measurements of early age properties of fresh concrete, 

including slump, unit weight, and setting time, are examined, as well as three types of 

shrinkage.  Mechanical performance (compressive strength, splitting tensile strength, 
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flexural strength, elastic modulus) and durability (chloride permeability, sulfate 

resistance, alkali reactivity) are also evaluated.  In addition, the evolution of hydration 

products over time is examined by thermal analysis.  Chapter II consists of a literature 

review of metakaolin replacement and its effect on concrete properties.  Mixture designs, 

testing program, and other experimental procedures are discussed in Chapter III.  Chapter 

IV contains the results and discussion of all data from testing.  Finally, Chapter V 

presents conclusions, recommendations for use of these MKs, and suggestions for future 

testing.  
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Chapter II 

Literature Review 

 

2.1 General Information 

2.1.1 History 

Metakaolin is produced by heat-treating kaolin, one of the most abundant natural 

minerals.  Kaolin is a fine, white clay that has traditionally been used in the manufacture 

of porcelain and as a coating for paper.  The term kaolin is derived from the name of the 

Chinese town Kao-ling, which translates loosely to "high ridge" and is home to the 

mountain that yielded the first kaolins to be sent to Europe [High Reactivity Metakaolin: 

Engineered Mineral Admixture for Use with Portland Cement, 2004].   

The vast majority of clay refined in the United States comes from Georgia, and 

the state is recognized as a world leader in the mining, production, processing, and 

application of kaolin products [Schroeder, 2003].  During the Cretaceous and Tertiary 

geological periods, the Atlantic Ocean covered much of the southern half of Georgia.  

The Piedmont Plateau met the ocean at the "Fall Line," which extended northeast across 

the state from Columbus to Augusta and is now commonly referred to as the "kaolin belt" 

(Figure 2.1).  As weathered granitic rocks deteriorated, they were carried seaward and 

formed large sedimentary deposits in this region.  These deposits, buried beneath 50-100 

meters of earth, contain a large volume of kaolin, as well as quartz, mica, limonite, and 
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anatase.  At present, more than eight million metric tons of kaolin are mined from 

Georgia each year, with an estimated value of over $1 billion [China Clay Producers 

Association, 2002]. 

 
 

 
Figure 2.1. "Kaolin belt" across central Georgia  

[China Clay Producers Association, 2002]. 
 
 

 
The first documented use of MK was in 1962, when it was incorporated in the 

concrete used in the Jupia Dam in Brazil.  It has been commercially available since the 

mid-1990s and currently costs approximately $500/ton [Zhang, 2004].  MK typically 

contains 50-55% SiO2 and 40-45% Al2O3 [Poon, 2001].  Other oxides present in small 

amounts include Fe2O3, TiO2, CaO, and MgO.  MK particles are generally one-half to 

five microns in diameter -- an order of magnitude smaller than cement grains and an 

order of magnitude larger than silica fume particles.  MK is white in color (whereas silica 

fume is typically dark grey or black), making it particularly attractive in color matching 

and other architectural applications.  Due to the controlled nature of the processing, MK 

powders are very consistent in appearance and performance [Ding, 2002].  Physical 

characteristics of commonly used pozzolans are shown in Table 2.1. 
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Table 2.1. Physical characteristics of selected pozzolans [Mindess, 2003]. 

 
 

2.1.2 Production 

Kaolin is a phyllosilicate, consisting of alternate layers of silica and alumina in 

tetrahedral and octahedral coordination, respectively (Figures 2.2 and 2.3).  This 

electrically neutral crystalline layer structure, which is a common characteristic of clay 

minerals, leads to a fine particle size and platelike morphology and allows the particles to 

move readily over one another, giving rise to physical properties such as softness, soapy 

feel, and easy cleavage [Kingery, 1976].  Kaolinite is the mineralogical term for hydrated 

aluminum disilicate, Al2Si2O5(OH)4, the primary constituent of kaolin (40-70%).  Other 

minerals comprising kaolin include quartz, muscovite-like micas, and rutile [Moulin, 

2001].   

 

 
(a)                                                    (b) 

Figure 2.2. Atomic arrangements of (a) Si2O5 and (b) AlO(OH)2 layers -- 

Material Mean Size (10-6 m) Surface Area (m2/g) Particle Shape Specific Gravity

Portland Cement 10-15 < 1 angular, irregular 3.2
Fly Ash 10-15 1-2 mostly spherical 2.2-2.4
Silica Fume 0.1-0.3 15-25 spherical 2.2
Metakaolin 1-2 15 platey 2.4
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� Si (a) or Al (b); ○ Oxygen; ◘ Hydroxyl [Brinkley, 1958]. 
 

 
Figure 2.3. Perspective drawing of kaolinite with Si-O tetrahedrons on the bottom half 

and Al-O, OH octahedrons on the top half of the layer [Brinkley, 1958]. 
 

Under normal environmental conditions, kaolin is quite stable.  However, when 

heated to temperatures of 650-900 °C, kaolin loses 14% of its mass in bound hydroxyl 

ions.  This heat treatment, or calcination, breaks down the structure of kaolin such that 

the alumina and silica layers become puckered and lose their long-range order.  Resulting 

from this dehydroxylation and disorder is MK, a highly reactive transition phase.  MK is 

an amorphous pozzolan, with some latent hydraulic properties, that is well-suited for use 

as an SCM [Bensted, 2002]. 

The calcining temperature plays a central role in the reactivity of the resulting 

MK product.  Ambroise et al. [Ambroise, 1985] studied the effects of calcining 

temperature on the strength development of MK-lime pastes.  These authors found 700 

°C to be optimal and later showed that calcination below this temperature results in a less 

reactive material containing more residual kaolinite.  Above 850 °C, they reported, 

recrystallization began and reactivity declined, as kaolin had begun to convert to 

relatively inert ceramic materials, such as spinel, silica, and mullite [Bensted, 2002].  The 

heating process, illustrated by differential thermal analysis (DTA), is shown in Figure 

2.4. 
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Figure 2.4. DTA thermogram of kaolin [DTA and TGA of Ball Clay and Kaolin, 1998]. 

     

Calcining is traditionally carried out in rotary kilns and takes several hours.  The 

use of a fluidized bed process may reduce calcining time to minutes, although both of 

these methods require grinding of the agglomerated products.  Flash-calcining, which 

consists of rapid heating, often to 1000 °C, followed by rapid cooling, may reduce the 

processing time further -- from minutes to several tenths of a second.  Additionally, there 

is no grinding step required, as the starting material is finely powdered kaolin suspended 

in a gas [Salvador, 1995].  The MKs examined in this study were produced using vertical 

hearth fluid bed calciners, into which the clay was fed at the top and the product collected 

from the bottom. 

While prolonged soak-calcining at lower temperatures is generally quite effective 

at removing hydroxyl groups, Salvador [Salvador, 1995] showed that the calcining rate 

does influence the pozzolanic reactivity of MK.  In his study, flash-calcined kaolins had 

higher water absorption capacities, and thus required more water to achieve suitable 



 9

workability, suggesting these had a higher initial reactivity than soak-calcined kaolins.  

Further, at the same water-to-cementitious materials ratio (w/cm), cylinders made with 

flash-calcined kaolins always performed better in compression than those made with 

soak-calcined kaolins. 

 

2.1.3 Pozzolanic Reaction and CH Consumption 

Regardless of the reactivity of an SCM, if it is extremely fine, it will generally 

impart some benefit to mortars and concrete.  Small particles, which can fit between 

cement grains, allow for more efficient paste packing, which in turn reduces bleeding, 

lowers the mean size of capillary pores, and may reduce water requirements due to a ball-

bearing effect (if the particles are round) [Mindess, 2003].  Improved particle packing at 

the aggregate/paste interface results in a thinner transition zone with a denser, more 

homogeneous microstructure [Wild, 1996].  In addition, acting together, many small 

particles have a large total surface area, leading to an increase in reactivity.       

Another important factor to consider when using SCMs is dilution.  When used as 

a replacement for cement, concrete mixtures will experience some effect of the removal 

of cement from the reacting system.  As such, unless the SCM begins reacting 

immediately, there will generally be a reduction in the rate of heat evolution and strength 

gain in proportion to the amount of cement being replaced.  Fly ash, especially, and even 

silica fume to a lesser extent, do not show beneficial effects until later in the hydration 

process [Curcio, 1998; Poon, 2001].  MK, however, because it is very small and 

possesses some latent hydraulic reactivity, may overcome the dilution effect, contributing 

to both heat and strength evolution at very early ages.   
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The presence of MK has an immense effect on the hydration of portland cement 

(PC).  When portland cement alone hydrates, typically 20-30% of the resulting paste 

mass is CH.  However, when MK is introduced, it reacts rapidly with these newly 

forming CH compounds to produce supplementary calcium silicate hydrate (C-S-H).  

Recalling cement chemistry notation from p. 1, the basic hydration reactions are as 

follows:   

2C32 + 11H → C3S2H8 + 3CH 
                                                                        (C-S-H)   (CH) 

2C2S + 9H → C3S2H8 + CH 
 

C3A + 3C�H2 + 26H → C6A�3H32 
                                                     (gypsum)               (ettringite) 

2C3A + C6A�3H32 + 4H → 3C4A�H12 
                                                                                      (monosulfate) 

C4A�H12 + 2C�H2 + 16H → C6A�3H32 
 

MK [Al2Si2O7] + CH + H → C-S-H, C4AH13, C3AH6, C2ASH8  
                                                               

In general, SCMs with higher alumina contents, such as MK, tend to have higher 

pozzolanic capacities because formation of C-A-H has a high CH demand.  This is 

critical, as CH does not make a significant contribution to concrete strength and can be 

detrimental to durability.  Its elimination or reduction by secondary reaction with MK can 

greatly enhance concrete performance [Mindess, 2003; Poon, 2002]. 

Determination of the degree of pozzolanic reaction completed can be 

accomplished via a selective dissolution procedure, like that developed by Oshawa et al. 

[Oshawa, 1985] and Li et al. [Li, 1985].  The procedure is based on the assumption that 

the majority of the unreacted pozzolan is acid insoluble.  In a blended cement paste, the 

pozzolan reacts with CH to form acid soluble hydration products.  Thus, it is possible to 

dissolve the unreacted cement and the hydration products of both the cement and the 
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pozzolan, leaving behind the insoluble residue of the unreacted pozzolan.  The degree of 

pozzolanic reaction completed is defined as the percentage of unreacted pozzolan 

remaining relative to the initial amount of pozzolan present in the cement paste.   

Results from such selective dissolution evaluations, carried out by Poon et al. 

[Poon, 2001], showed that the degree of pozzolanic reaction was higher at a replacement 

level of 5% MK than at replacement levels of 10% and 20% for all ages.  Similar results 

were observed with silica fume, though the 5% silica fume values were never as high as 

the 5% MK values.  This higher rate of pozzolanic reaction in pastes with a lower 

replacement level could likely be attributed to the greater amount of cement, and thus 

higher concentration of CH, available for reaction with the pozzolan. 

Because MK reacts with and consumes free CH, another method for determining 

the extent of pozzolanic reaction completed is to measure the remaining CH content in a 

paste, mortar, or concrete sample.  As part of the same study, Poon et al. [Poon, 2001] 

also determined total CH content of paste samples, both based on the ignited weight and 

the weight of cement, using differential scanning calorimetry.  This was performed in air 

atmosphere at a heating rate of 10 ûC/min.  The CH content was calculated from the 

weight loss between 425 ûC and 550 ûC.  In either case, cements blended with 20% MK 

showed the least total CH at all ages.  MK mixtures showed steadily decreasing CH 

contents up to 90 days, as illustrated in Figure 2.5. 
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Figure 2.5. CH content calculated based on cement weight [Poon, 2001]. 

 

Wild and Khatib [Wild, 1997] performed a similar experiment, measuring CH 

consumption in MK-PC pastes and mortars, which were cured in water at 20 °C.  Results 

from these thermogravimetric analyses (TGA) are shown in Figure 2.6.  The CH, 

expressed as a percentage of cement weight, showed a minimum at about 14 days of 

curing.  This was attributed to a peak in pozzolanic activity for which more CH was 

being removed from the paste by reaction with MK than was being generated by the 

cement hydration.  Interestingly, the peak in relative compressive strength (the ratio of 

strength at a given age to the strength of the control at the same age) coincided with the 

maximum in pozzolanic activity -- at 14 days of age.  Increases in CH content and a lag 

in strength gain beyond 14 days were attributed to the formation of an inhibiting layer of 

reaction product on the surface of the MK particles.   



 13

 
Figure 2.6. Change in CH content versus curing time, as measured by TGA, 

for metakaolin (a) mortar and (b) paste [Wild, 1997]. 

 

Frías and Cabrera [Frías, 2000] evaluated CH content of MK pastes via DTA and 

TGA.  These analyses were conducted in nitrogen atmosphere and at a heating rate of 20 

°C/min.  CH contents of MK-PC specimens were found to increase with age until 3-7 

days.  Subsequently, as with the Wild and Khatib [Wild, 1997] study, CH contents began 

decreasing in proportion to the percentage of MK added.  Interestingly, the 10% and 15% 

MK curves showed an inflection point around 90 days of age, after which CH content 

again began to rise, however slightly (Figure 2.7).  This point could represent the end of 

the pozzolanic reaction due to the total consumption of MK. 



 14

 
Figure 2.7. Evolution of CH with hydration time [Frías, 2000]. 

  

Oriol and Pera [Oriol, 1995] utilized DTA and Fourier transform infrared 

spectrometry to follow lime consumption in MK blended cements under microwave 

treatment.  This treatment was intended to accelerate hydration like traditional thermal 

curing methods.  These authors reported that total elimination of CH was achievable in 

binders containing 15% MK given sufficient hydration time.  To fully eliminate CH in 

binders with a w/cm of 0.5 in just 28 days, between 30% and 40% MK was required.  

 

2.1.4 Porosity Evolution 

In most cases, mortars and concrete containing pozzolanic SCMs have total 

porosity values equal to or less than that of PC concrete.  However, it is not so much the 

total porosity as it is the pore size distribution and the permeability that are critical to the 

performance and durability of concrete.  The evolution of porosity depends on certain 

characteristics of the SCM, such as particle size, chemical composition, mineralogy, and 

loss on ignition.  Because of its fineness and high pozzolanic reactivity, MK has great 

potential to decrease concrete porosity. 
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Frías and Cabrera [Frías, 2000] evaluated the evolution of total, capillary, and gel 

porosity with hydration time via mercury intrusion porosimetry (MIP).  Capillary pores 

were considered to fall within 0.01-5.00 µm, while gel pores were smaller than 0.01 µm.  

Five pastes were prepared at a w/cm of 0.55 and were tested nine times over the course of 

one year.  To stop hydration, samples were either vacuum oven-dried at 1 bar and 50 ûC 

(for MIP) or microwaved (for DTA and TGA).  Unfortunately, these authors did not 

compare the two techniques to determine if microwave drying damaged the paste pore 

structure or altered its composition.    

There was a reduction in total porosity observed up to 28 days, after which it 

remained fairly constant.  Mixtures containing MK actually showed higher total 

porosities than controls (approximately 16%), likely due to the high water content, 

although the MK pastes had fewer pores in the 0.01-5.00 µm range and more pores 

smaller than 0.01 µm, indicating refinement.  Additionally, with longer hydration times, 

there was no significant difference in the capillary porosity of pastes made with 15, 20, or 

25% MK, indicating that 15% replacement may be sufficient. 

Khatib and Wild [Khatib, 1996], like the previous authors, examined pastes with a 

w/cm of 0.55 using MIP.  MK incorporation led to pore structure refinement, with the 

proportion of pores having radii smaller than 20 nm increasing significantly as the 

replacement level increased (Figure 2.8).  At 14 days, pastes with 15% MK had nearly 

60% of their total pore volume in sub-20 nm pores, while the control paste had only 

about 30%.  This represents the age at which the percentage of fine pores is the highest 

and also where strength enhancement by MK reaches a maximum, confirming that the 

major part of the pore refinement process occurs at a very early age [Khatib, 1998].  The 
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authors attributed this to an inhibiting layer of reaction product around the metakaolin 

particles, thus terminating their reaction with CH and preventing further pore refinement 

beyond 14 days.  It should be noted, however, that MK does not have much influence on 

total intruded pore volume, which increased slightly relative to controls in these 

evaluations.  The authors suspect that this may be the result of a phase transformation of 

MK/CH reaction products leading to a decrease in solid volume and an increase in 

porosity.     

 

 
 

Figure 2.8. Pore size distribution (radii < 20 nm) versus curing time for pastes containing 
0-15% MK [Khatib, 1996]. 

 

Poon et al. [Poon, 2001] also utilized MIP to evaluate porosity and pore size 

distribution of MK pastes.  These pastes had lower porosity and smaller average pore 

diameters than the control and the silica fume pastes at all ages tested (3, 7, 28, and 90 

days).  This indicates that MK is more effective than silica fume in the refinement of pore 

structure.  These results are different than those reported by both Frías and Cabrera 
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[Frías, 2000] and Khatib and Wild [Khatib, 1996], who both found MK pastes to have 

16% greater porosity than controls at 28 days.  However, these previous studies were 

conducted at a w/cm of 0.55, while the Poon et al. study was conducted with pastes 

prepared at a w/cm of 0.30.   Ambroise et al. [Ambroise, 1994] found similar results to 

Poon et al., although unfortunately did not examine MK-PC and plain PC pastes with the 

same water contents.  They found that a 20% MK paste with a w/cm of 0.34 had nearly 

the same porosity as a control paste with a w/cm of 0.25.  This implies that the porosity 

of an MK paste at a w/cm of 0.25 would be lower than the control, and supports the 

conclusion that MK makes a significant contribution to pore structure refinement.  While 

these results are interesting, there is some disagreement as to whether MIP is a reliable 

technique; many believe that the high pressures it requires can actually cause the pore 

structure to collapse, yielding inaccurate results [Diamond, 2000].  

Khatib and Clay [Khatib, 2003] investigated the water absorption by capillary rise 

and total immersion of concrete containing MK.   Five concrete mixtures, containing 0-

20% MK, were examined.  After the required curing period, cubes were sliced into 

sections and dried in an oven at 100 ûC for 48 h.  Capillary rise was measured by placing 

dried slices on supports in a shallow tray, adding water until the level was approximately 

1.5 mm above the base of the sample, and measuring sample mass at regular intervals.  

Total water absorption was measured by comparing the dry mass to the saturated mass 

achieved after 48 h of immersion at 20 ûC.   

Increasing MK content resulted in a decrease in the slope of the linear portion of 

the absorption-time curve, indicating that the presence of MK decreases absorption by 

capillary rise.  This slope, which was termed the water absorption coefficient (WAC), 
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was then plotted against curing time (Figure 2.9).  For all mixtures, the WAC decreased 

sharply up to 14 days curing.  Then, while the control mixture continued slowly 

decreasing, the MK mixtures increased up to 28 days and ultimately leveled off.  Despite 

this increase, the WAC for all MK mixtures was lower than for the control specimen.  

Further, Khatib and Clay [Khatib, 2003] reported that upon visual examination at the end 

of the capillary test, control specimens had water on their top surfaces.  As the percentage 

of MK increased, the appearance of water was greatly reduced, and the 15% and 20% 

MK samples had no visible water on their top surfaces [Khatib, 2003].   

 

 

Figure 2.9. Variation of water absorption coefficient with curing time for  
concrete containing MK [Khatib, 2003]. 

 
 

In terms of total water absorption, MK specimens actually showed a slight 

increase over controls.  That is, after 48 h of immersion in water at 20 °C, samples 

containing metakaolin had higher saturated masses than controls.  There was a systematic 

increase in water absorption with increasing MK content.  Although unique, such 

immersion techniques seem somewhat rudimentary and should have been verified by 
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more quantitative methods.  However, the results are in accord with those of Frías and 

Cabrera [Frías, 2000] and Khatib and Wild [Khatib, 1996]: water absorption during full 

immersion seems to be related to total pore volume, which has been shown to increase 

with MK usage.  Conversely, water penetration into concrete by capillary action has been 

shown to decrease when MK is used, suggesting a discontinuity of pores [Khatib, 2003].  

 

2.2 Early Age Properties 

2.2.1 Slump 

Early age properties measure the workability and setting behavior of fresh 

concrete.  These generally include slump, unit weight, setting time, and heat of hydration.  

The properties of fresh concrete are important because they affect the choice of 

equipment needed for handling and consolidation and because they may affect the 

properties of hardened concrete [Mindess, 2003].  

Slump is by far the oldest and most widely used test of workability.  This test 

involves filling a cone mold with fresh concrete in three layers of equal volume, rodding 

each layer 25 times, lifting the mold away vertically, and measuring the height difference 

between the cone mold and the concrete.  Metakaolin has been shown to produce smaller 

slumps than control mixtures, although its effect relative to mixtures containing silica 

fume is not agreed upon.  Ding and Li [Ding, 2002] reported that MK offered much better 

workability than did silica fume for the same mixture proportions.  These mixtures 

contained 5, 10, or 15% replacement with either MK or silica fume, and a w/cm of 0.35.  

Additionally, they found that at 5% and 10% replacement, MK mixtures had a slightly 

higher slump than the control mixture.  At 15% replacement with MK, slump decreased 
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approximately 10% from the control value.  In contrast, slump decreased almost linearly 

with increasing silica fume replacement, indicating that MK concrete mixtures should 

require less superplasticizer than corresponding silica fume mixtures to achieve similar 

workability at the same w/cm.   

Fresh properties of Dubey and Banthia's [Dubey, 1998] eight mixtures are shown 

in Table 2.2.  These mixtures all contained 161.35 kg/m3 of water and 350 mL of 

superplasticizer per 100 kg of cement.  Slump values for the various mixtures 

demonstrate that the reduction in workability due to replacement with 10% silica fume 

was more pronounced than that obtained with an equal amount of MK replacement.  This 

indicates that, in order to achieve a given workability, MK concrete should require a 

lower dose of water-reducing chemical admixture than silica fume concrete.  Dubey and 

Banthia propose that this may be due to the larger particle size of MK relative to silica 

fume (1.5 µm v. 0.1 µm) in their study. 

 

Table 2.2. Fresh and hardened properties of various concrete mixtures [Dubey, 1998]. 
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The above results were supported by those of Caldarone et al. [Caldarone, 1994], 

but the opposite phenomenon was observed by Bai et al. [Bai, 1999], who found 

workability to be substantially reduced for mixtures containing MK.  Khatib and Clay 

[Khatib, 2003] reported that the dosage of superplasticizer required, in their study, 

increased with increasing MK content, to compensate for losses in workability.  Qian et 

al. [Qian, 2001] also found slump to progressively decrease with MK content in concrete 

mixtures containing 1% naphthalene sulfonate-based powder superplasticizer.  However, 

by increasing the superplasticizer dose to 1.2%, the slump showed only minor variation 

with increasing MK content.  

  

2.2.2 Setting Time 

The setting of concrete is generally understood as the onset of solidification and 

hardening (strength gain) of a fresh concrete mixture.  Initial setting time (initial set) is 

defined as the time elapsed between the addition of water and the point when paste ceases 

to be fluid and plastic.  This is the limit for handling concrete -- it should be placed 

before initial set.  Final set indicates the onset of the development of mechanical strength.  

Many factors influence setting time, including the w/cm, casting and curing temperature, 

admixture type, source, and dosage, and cement content, fineness, and composition 

[Brooks, 2000].  

Knowledge of setting behavior is extremely important in the field of concrete 

construction.  This information is helpful in scheduling the various stages of construction 

operations, such as transporting, placing, compacting, finishing, and demoulding of 

concrete, and is a necessity when deciding whether set-accelerating or set-retarding 
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admixtures will be necessary.  Further, measurements of autogenous shrinkage, an 

important property of high-strength (HSC) and high-performance concrete (HPC), should 

commence at the time of initial set.  Previous researchers have found MK incorporation 

to have varying effects on the setting behavior of mortars and pastes.      

Brooks et al. [Brooks, 2000] examined the effect of silica fume, MK, FA, and 

slag on setting time of high strength concrete via ASTM C 403.  This method involves 

passing freshly mixed concrete through a 5 mm sieve, and measuring the force required 

for a needle to penetrate 25 mm into the collected mortar.  An optimum w/cm of 0.28 was 

obtained for the control mixture using the Cabrera Vibrating Slump test, developed by 

Cabrera and Lee [Cabrera, 1985], and was used for all concrete mixtures.  A sulfonated 

vinyl copolymer superplasticizer was added as necessary to achieve similar workability 

between mixtures.   

Initial and final setting times are defined as the times at which the penetration 

resistance in mortar reaches values of 3.5 MPa (500 psi) and 27.6 MPa (4000 psi), 

respectively (ASTM C 403).  Brooks et al. found that all SCMs tended to retard setting 

time, and that increasing the levels of silica fume, FA, and slag resulted in greater 

retardation of the set.  For HSC containing MK, there was a progressive increase in the 

retarding effect up to 10% replacement, but a reduction at higher replacement levels.   

Similar results were reported by Batis et al. [Batis, 2004], who examined both a 

local Greek kaolin heat-treated in their own lab and a commercially available MK 

product.  These authors found all MK mixtures to have significantly longer setting times 

than control pastes.  The mixture slowest to set was incorporated with 20% MK, 

requiring 205 minutes for initial set versus 105 minutes for the control.  This could be 
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due, in part, to the high water demand of MK pastes.  While controls required a w/c of 

0.275 to achieve "normal consistency," 20% MK mixtures required a w/cm of 0.41.  

Vu et al. [Vu, 2001] reported that higher blending percentages resulted in a higher 

water demand to reach normal consistency.  For the particular Vietnamese kaolin used in 

this study, setting times of pastes in the lower replacement range (10-20% MK) were not 

significantly affected by blending.  Beyond this range, the initial and final setting times 

increased by 15% and 10%, respectively, likely due to the lower cement and higher water 

contents involved.    

Conversely, in a 2001 study, Moulin et al. [Moulin, 2001] found pastes made 

from MK blended cements to have a much shorter setting time compared to control 

pastes.  These results were obtained using a Vicat needle apparatus according to ASTM C 

191 and were conducted at a w/cm on 0.40.  Moulin also examined the rheology of the 

same pastes using a shear vane rheometer to characterize yield stress.  He found that the 

presence of MK significantly increased both the five and 90 minute yield stress when 

compared to reference pastes.  This confirmed that MK blending results in a higher water 

demand and leads to thixotropic behavior, and Moulin et al. explained these to be the 

result of the accelerating effect of MK on PC hydration.   

Caldarone et al. [Caldarone, 1994] also found MK to shorten setting time, as 

compared to control samples.  In this study, initial set of MK mixtures was reported as 

4.1 h, while SF and control mixtures did not achieve initial set until 4.2 h and 4.8 h, 

respectively.  However, these authors, who were careful to note when ASTM standards 

were followed, do not indicate how initial set was determined.  Since the remainder of the 
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evaluations were performed on concrete, we are left to assume that initial set was 

determined by visual inspection of concrete specimens, which is arbitrary. 

  

2.2.3 Heat of Hydration 

The use of MK increases the heat evolved during hydration.  This has been 

attributed both to the accelerating effect of MK on PC hydration and the high reactivity 

of MK with CH.  Enhanced temperature rise becomes critical in larger members and 

slabs, as it may lead to thermal stress cracking.  However, in cold weather concreting or 

where faster set is required, this property can be desirable.   

According to Zhang and Malhotra [Zhang, 1995], whereas FA incorporation 

decreased the overall heat evolved, 10% replacement with MK actually caused a 7 °C 

increase over PC-concrete [Zhang, 1995].  Ambroise et al. [Ambroise, 1994] reported 

temperature rises of  8 °C, 6 °C, and 1 °C over controls, for 10%, 20%, and 30% 

replacement, respectively, in mortars.  The smaller temperature increases at higher 

replacement levels are likely due to the dilution effect of removing such a large mass of 

cement from the system.  In comparison, replacement with 10% silica fume produced a 

temperature rise of only 0.5 °C. 

Frías et al. [Frías, 2000] compared FA, silica fume, and MK in terms of heat 

evolution using a Langavant calorimeter.  This semi-adiabatic method, described in the 

Spanish standard UNE 80 118, measures the heat generated during cement hydration 

using a thermally isolated Dewar flask.  Heat is defined as the temperature difference 

between the hydrating mortar and an inert mortar (at least three months old).  Blended 
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cement pastes contained 10% or 30% SCM and were used to produce mortars with a 

sand-to-cement ratio of 3:1 and a w/cm of 0.50.      

The total heat evolved (up to 120 h) was found to decrease significantly with 

increasing FA substitution, increase slightly on substitution with 10% silica fume, and 

essentially stay the same for increasing levels of MK substitution.  However, these 

authors also measured the temperature rise, or the peak height relative to controls, for 

these hydrating mortars.  FA mortars exhibited a continual reduction in temperature rise 

with increase in substitution level, silica fume incorporation resulted in a decrease of 1.5-

3.0 °C, and MK caused an increase in temperature peak of 6-7 °C.  From this, it is clear 

that reducing the cement content of a mixture will reduce the heat output from cement 

hydration, but will not necessarily reduce the initial rate of heat evolution or the 

maximum temperature reached.  

Bai et al. [Bai, 2002] looked specifically at the effects of FA and MK on heat 

evolved using embedded thermocouples.  Mortar mixtures were placed in 150 mm 

plywood cube molds and thermally isolated by encasement in 100 mm thick expanded 

polystyrene and another layer of plywood.  With increasing replacement levels, the 

temperature rise in FA systems was found to decrease, while the temperature rise in MK 

systems was found to increase substantially.  Numeric peak temperature values were as 

follows: 29 °C, 27 °C, and 31 °C for the control, 10% FA, and 10% MK mixtures, 

respectively.  Bai et al. further investigated the use of FA and MK in ternary blends at 

total PC replacement levels of up to 40%.  These appeared to have a compensatory effect 

on temperature rise: the temperature rise for a 10% FA-10% MK blend was exactly the 

same as that of the control (Figure 2.10). 
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Figure 2.10. Peak temperature rise for MK-FA-PC blended mortars [Bai, 2002]. 

 

2.3 Shrinkage 

The effect of MK on shrinkage properties is not well understood or agreed upon.  

In general, however, MK is expected to increase shrinkage in cementitious systems.  Its 

inclusion offers many performance enhancements, including increases in strength and 

decreases in permeability.  Both are likely due to refinements in pore structure, which 

generally causes greater shrinkage.   

Chemical shrinkage is a result of the volume difference between reactants and 

products in a hydrating cement system.  As hydration proceeds, the volume occupied by 

the products is smaller than that of the reactants.  Thus, unless water is supplied from an 

external source, this volume discrepancy, or chemical shrinkage, will result in the 

formation of empty pores within the cement paste microstructure.  This empty porosity 

then leads to a reduction in paste internal relative humidity and a measurable autogenous 

shrinkage of the material [Bentz, 1999].  Free, or drying, shrinkage is the contraction that 

results as a paste, mortar, or concrete loses water to the environment.    
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Brooks et al. [Brooks, 2001] found MK replacement to decrease very early age 

autogenous shrinkage of concrete, likely the most critical kind.  The materials used in this 

investigation were portland cement, natural river sand, quartzitic gravel with a maximum 

size of 10 mm, metakaolin (BET specific surface area=15 m2/g), and sulfonated vinyl 

copolymer superplasticizer.  During the first 24 h of curing, autogenous shrinkage was 

measured inside cylindrical molds with PTFE linings and embedded strain gauges, and 

was found to decrease with increasing MK content.  Concrete made using 15% MK 

replacement for cement showed a 65% reduction in autogenous shrinkage as compared to 

controls at 24 h of age.  These results are shown in Figure 2.11a.   

After 24 h, concrete samples were demoulded and sealed with aluminum 

waterproofing tape.  This sealing method was effective, as specimens showed minimal 

mass loss over the duration of testing.  Continuing to measure autogenous shrinkage from 

the age of 24 h, the authors found that all MK samples experienced greater shrinkage than 

control samples.  During the first two weeks, samples containing higher MK contents 

shrank more; however, from approximately five weeks on, mixtures containing less MK 

showed more shrinkage.  Relative to controls, the 200-day autogenous shrinkage 

increased by 91%, 80%, and 56%, for concrete replaced with 5%, 10%, and 15% MK, 

respectively (Figure 2.11b). 

Brooks et al. [Brooks, 2001] went on to calculate total shrinkage by combining 

the 24 h autogenous shrinkage with drying shrinkage of the same specimens, which were 

held in an environmental chamber at 21 °C and 65% relative humidity after demolding 

(Figure 2.11c).  This total shrinkage was intended to mimic field conditions, sealed in 

forms for the first 24 h and exposed to the environment thereafter.  When combined as 
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such, the overall effect of the MK was to reduce total shrinkage of specimens.  All MK 

mixtures showed less total shrinkage than controls, with higher replacement levels having 

a more pronounced shrinkage-reducing effect.   

   

 

 

 
Figure 2.11. Effect of MK on the (a) early age, (b) long-term, and  

(c) total autogenous shrinkage of concrete [Brooks, 2001]. 

  

Wild et al. [Wild, 1998] studied autogenous and chemical shrinkage of MK-PC 

pastes for MK contents in the range 5-25%.  Both autogenous and chemical shrinkage 

were found to increase over control pastes, reaching a maximum between 10% and 15% 

replacement, indicating an optimum in the combined effect of cement hydration and the 

removal of water from the system due to reaction of the MK at this composition.  At 
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higher MK contents, both autogenous and chemical shrinkage were found to decrease 

sharply.  Wild attributed this to the formation of increased amounts of lower density 

C2ASH8 and reduced amounts of higher density C4AH13 compounds in the presence of 

greater MK contents, producing an overall volume increase and thus reducing autogenous 

shrinkage.  Similar conclusions were made by Kinuthia et al. [Kinuthia, 2000], who 

found autogenous shrinkage to increase for 5 and 10% MK but decrease for 15 and 20% 

replacement, although this effect could also be related to a reduction in PC content.   

In terms of free shrinkage alone, Caldarone et al. [Caldarone, 1994] found that 

replacement with 10% MK served to reduce shrinkage of concrete by nearly one third 

after 156 days of drying at 50% relative humidity.  This phenomenon could be attributed, 

in part, to the fact that the reaction of MK consumed more free water in the system, 

leaving less evaporable water during shrinkage.  This supports the conclusion that MK 

concretes have a lower porosity and finer pore structure, which encourages loss of water 

by self-desiccation rather than by diffusion to the surrounding environment. 

Ding and Li [Ding, 2002] found free shrinkage of concretes containing MK or 

silica fume to decrease with increasing replacement percentage.  Concrete mixtures 

containing 15% MK experienced 40% less free shrinkage than controls, while 15% silica 

fume mixtures shrank 33% less than controls.  Ding and Li also calculated shrinkage rate, 

and found that compared with silica fume mixtures at the same replacement level, MK 

concretes showed a faster development of shrinkage during the first week of drying and a 

slower rate after that.  Zhang and Malhotra [Zhang, 1995] reported similar findings -- 

although they initially shrank fastest, concrete with 10% MK had a lower drying 

shrinkage rate than control and silica fume concretes beyond one week of age.    
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2.4 Mechanical Properties 

2.4.1 Strength 

2.4.1a Compressive and Tensile Strength 

Partial replacement with MK can improve concrete strength.  However, it is not 

clear whether MK or silica fume produces greater increases in strength.  If it is 

determined that MK increases strength as much or more than silica fume, MK might find 

greater application in HSC and HPC in the future.   

The vast majority of papers about MK incorporation make some mention of 

strength.  Caldarone et al. [Caldarone, 1994] produced concretes with 5% and 10% MK 

by weight of Type I cement, with w/cm of 0.40, which showed enhanced strengths at 

ages up to 365 days.  These specimens showed strengths an average of 10% greater than 

concrete incorporated with the same amount of silica fume.  At 365 days, the specimens 

prepared with 5% MK showed the highest strength of the group, 11.35 ksi, followed by 

10% MK, 10% silica fume, and 5% silica fume (9.21 ksi).  Control specimens had the 

lowest strengths at all ages.   

Similar results were reported by Wild et al. [Wild, 1996], who tested concretes 

ranging from one to 90 days in age, produced at a w/cm of 0.45 with cement complying 

with BS12:1989.  He found that 20% replacement with MK was optimal for achieving 

maximum long-term strength enhancement.  A summary of Wild et al.'s results is shown 

in Table 2.3.   
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Table 2.3. Compressive strengths of metakaolin-concretes [Wild, 1996].  

 

 

These authors concluded that there are three elementary factors influencing the 

contribution that MK makes to strength when it partially replaces cement in concrete.  

These are the filler effect, the acceleration of PC hydration, and the pozzolanic reaction 

of MK with CH.  According to Wild et al., the filler effect is immediate, the acceleration 

of PC hydration has maximum impact within the first 24 hours, and the pozzolanic 

reaction makes the greatest contribution to strength somewhere between 7 and 14 days of 

age.  Wild et al. also concluded that the positive contribution made by MK does not 

continue beyond 14 days, irrespective of the replacement level.  This result was not 

confirmed by other researchers [Ding, 2002] and the table above indicates otherwise. 

Wild et al. [Sabir, 2001] later showed that increasing the specific surface of MK 

from 12 to 15 m2/g reduces the age at which maximum strength enhancement occurs in 

MK mortars, illustrating the effect of particle size on reaction rate.  Because of the 

increased surface area, MK was able to react more rapidly, leading to a faster rate of 

strength evolution.  This increase in fineness also resulted in an increase in the optimum 

level of replacement of cement by MK, meaning that more of the cement could be 
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replaced by this MK without the system suffering a lag due to dilution.  Interestingly, this 

change in fineness did not influence the long-term (90 day) strength.  

Ding and Li [Ding, 2002], who examined 5, 10, and 15% replacement with either 

MK or silica fume, found that both were effective in increasing strength beyond 14 days.  

At all ages, MK and silica fume performed similarly, increasing concrete strength to 

almost the same extent over controls.  MK increased strength nearly linearly during the 

first 28 days of curing and then slowed down -- 65-day strength was only 6-8% greater 

than 28-day strength.  Li and Ding [Li, 2003] further investigated 10% replacement with 

MK, combining it with PC alone or with both PC and ultra-fine slag.  The compressive 

strength of the mortar mixture containing only MK was always greater than the control 

mixture, and was approximately 8 MPa greater by 28 days.  Further, although initially 

lower, the MK-slag mixtures showed the highest 28-day strength. 

Curcio et al. [Curcio, 1998] examined compressive strength development in 

mortars containing 15% MK.  Specimens cast with three of the four MK materials tested 

showed higher rates of strength evolution than controls at ages up to 28 days.  Samples 

cast with silica fume (S) and the fourth MK (M4), which was coarser but of 

approximately the same chemical composition, did not accelerate strength gain.  Beyond 

28 days, as shown in Figure 2.12, differences between controls and specimens containing 

admixtures were smaller.   
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Figure 2.12. Compressive strength v. curing time for control mortars (C) and mortars 

containing 15% MK (M1-M4) or silica fume (S) [Curcio, 1998]. 
 

 

Vu et al. [Vu, 2001] studied a specific kaolin indigenous to northern Vietnam in 

order to determine the degree to which kaolin could replace PC in local mortar and 

concrete production.  He found that the optimum PC replacement level increased with 

mortar maturity for all water-to-cement ratios.  For early age mortars (up to seven days), 

10% replacement with MK was optimal, while 15-20% was best in the 7-28 day range 

and 20-25% replacement resulted in the highest strength mortars 28 days and older.  This 

implies that the pozzolanic reaction of MK may not make its peak contribution to 

strength until later in the hydration process.  Vu also examined the effects of varying 

water content, and found that less MK was necessary to achieve maximum strength 

increases at lower w/cms.  For mortars with a w/cm of 0.32, 10% replacement was 

optimum; for w/cm=0.44, 20% was optimum. 
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Qian et al. [Qian, 2001] measured both compressive and tensile strength of 

concretes incorporating MK.  Compressive strength was found to increase substantially 

with increasing MK content.  In samples with 15% replacement, compressive strength 

had increased 51% over controls by three days of age.  In fact, the compressive strengths 

of samples containing 10% and 15% MK were higher at three days than the 28-day 

control strength, confirming that MK has a pronounced effect on early strength.  Courard 

et al. [Courard, 2003] came to a similar conclusion, reporting that mortars had achieved 

79% of their 28-day compressive strength by just three days of age.  Qian [Qian, 2001] 

found that tensile strength also increased systematically with increasing MK content.  

The average tensile strength increases over controls were as follows: 7% (5% MK), 16% 

(10% MK), and 28% (15% MK).  This was the only study reporting MK's effects on 

tensile strength.    

 

2.4.1b Flexural Strength (Modulus of Rupture) 

Very few studies have been published that have focused specifically on the 

influence of MK on modulus of rupture (MOR).  Although there is little existing 

literature, there is good agreement that MK improves the flexural strength of concrete.      

In a 1998 paper, Dubey and Banthia [Dubey, 1998] examined both MK and silica 

fume and their influence on flexural strength of high-performance steel fiber-reinforced 

concrete.  As controls, specimens were cast with 10% SCMs but without fibers and vice 

versa.  Both MK and silica fume increased MOR approximately 15% over the 100% PC 

sample in the prisms not containing fibers.  The specimen containing 1% fibers and no 

SCMs had an MOR value similar to these, around 7.2 MPa.  From the complete load-
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displacement curves, Dubey and Banthia observed that the post-peak performance of 

fiber-reinforced concrete with MK was superior to other composites.  That is, MK 

incorporation served to increase toughness.  Silica fume concrete, on the other hand, 

exhibited a relatively brittle behavior and showed poor energy absorption performance, as 

evidenced by a steep drop in load after peak indicating a greater rate of softening and 

damage in these composites.  Strength and toughness values are shown in Table 2.4. 

 

Table 2.4. Modulus of rupture and toughness values for MK-concretes [Dubey, 1998]. 

 

  

Qian et al. [Qian, 2001] measured the flexural strength of concrete beams in four-

point bending for varying amounts of MK replacement at both 28 and 80 days of age.  In 

either case, 5% replacement had little effect.  For higher replacement levels, however, 

MOR increased significantly: by 28 days, it increased 32% and 38% for 10% and 15% 

replacement, respectively.  These results are shown in Figure 2.13. 
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Figure 2.13. Flexural strength of concrete beams with  
various replacement levels [Qian, 2001]. 

 
 

Vu et al. [Vu, 2001] monitored flexural strength of MK-PC mortar prisms, 

although this study focused more on durability than strength evolution.  These authors 

found that compressive and flexural strengths increased as a result of replacement with 

MK, even in concentrated sulfate environments.  Compressive strength increased 

approximately 20% in 20% MK specimens.  Flexural strength showed a less pronounced 

increase, as degradation due to sulfate attack first manifested itself at the specimens' 

surfaces, leading to spalling, mass loss, and thus lower MOR values.       

Palomo et al. [Palomo, 1999] conducted a unique study that assessed MK without 

cement.  He prepared a sodium hydroxide solution, added water glass (sodium silicate), 

and then mixed with MK in a planetary mixer while incrementally adding sand.  Small 

prisms (1×1×6 cm) were cast from the paste, oven-cured for 2 h, and then immersed in 

jars containing various solutions.  Rather than examining expansion, Palomo investigated 

the evolution of flexural strengths in these prisms.  For the first three months, the 

strengths fluctuated, regardless of immersion medium.  During this fluctuation stage, 

prisms submerged in sulfuric acid solution consistently had the lowest flexural strengths 
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of the group.  After three months, however, when strength began to develop consistently, 

the prisms in seawater performed inferior to all other specimens (5 MPa).  Those 

contained in sulfuric acid, sodium sulfate, and deionized water all reached approximately 

the same flexural strength (7 MPa).  Through XRD, Palomo identified a primarily 

amorphous material containing small amounts of a crystalline zeolite belonging to the 

Faujisite family, which appears to act as reinforcement of the cement matrix.  This 

indicates that MK may be alkaline-activated with concentrated NaOH to produce zeolitic 

precursors with excellent mechanical strength and good stability in aggressive 

environments (at least up to 270 days). 

 

2.4.2 Modulus of Elasticity 

There is little existing literature regarding the effect of metakaolin on the modulus 

of elasticity (MOE) of concrete.  As it has been shown to increase compressive strength 

and to densify the microstucture, it follows that MK might also lead to increased elastic 

modulus, or stiffer concrete.  From the literature, MOE generally seems to increase with 

increasing MK content, although the rate of increase is lower than that for compressive 

strength. 

The study performed by Qian et al. [Qian, 2001] reported that at three days 

curing, concrete containing 15% MK had an elastic modulus of 26.2 GPa, as compared to 

24.1 GPa for the control sample at this age.  At 60 days of age, 15% MK and control 

concretes showed MOE values of 34.7 and 30.4 GPa, respectively. 

Khatib and Hibbert [Khatib, 2004] evaluated dynamic modulus of elasticity for 

w/cm=0.50 concretes containing 0, 10, or 20% MK.  They found that MK increased 
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MOE at all curing times, and that 10% and 20% replacement increased MOE to the same 

extent over controls.  There was a sharp increase towards the end of the examination 

period: between 28 and 90 days, MOE increased from 38 kN/mm2 to 50 kN/mm2.  

Unfortunately these authors did not continue their study beyond 90 days to see if the 

effect persisted. 

Caldarone et al. [Caldarone, 1994] reported increases in MOE associated with 

MK usage, as well.  These authors performed ASTM C 469 to determine the static 

modulus of elasticity of concrete prepared with a w/cm=0.40 and 5% or 10% MK.  MOE 

was measured at two ages, 28 and 90 days, and reported values were based on the 

average of two moist-cured 6 × 12" cylinders.  At 28 days, concrete containing 5% MK 

had increased MOE 15% over controls, while concrete containing 5% SF increased MOE 

by 13%.  Results from this study are shown in Table 2.5 below. 

 

Table 2.5.  Static modulus of elasticity for w/cm=0.40 concretes [Caldarone, 1994]. 

Control 5% MK 10% MK 5% SF 10% SF

28 Days 4805 5515 5640 5435 5590
91 Days 4980 5685 5880 5575 5855

Static Modulus of Elasticity (ksi)Testing 
Age

 
 

 

2.5 Durability 

In addition to strength, MK incorporation is widely regarded as an effective 

means to increase concrete durability.  This is achieved primarily in the ITZ, which is 

characterized by a higher porosity, a higher local w/cm, and differing mineralogical and 

chemical composition than the bulk paste.  It has been suggested that these properties of 

the ITZ can be detrimental to some composite properties, including resistance to chloride 
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and sulfate transport.  MK, which has been shown to affect the chemistry and 

microstructure of the ITZ, may thus play a role in reducing ion transport and improving 

concrete durability.  Three aspects of durability will be discussed herein: chloride 

permeability, sulfate attack, and alkali-silica reaction. 

 

2.5.1 Chloride Permeability 

The rapid chloride permeability test (RCPT), as described in ASTM C 1202, is a 

common test used to determine the resistance of concrete to chloride ion penetration.  

This test provides an indirect measure of chloride permeability by monitoring the charge 

passed (in Coulombs) through a concrete sample.  One side of the concrete cylinder is 

exposed to a NaCl solution, and when a 60 V potential is applied, charge-carrying Cl- 

ions will diffuse through to the other side of the cylinder, which is in contact with a 

NaOH solution.  Unfortunately, these results cannot be used to directly predict the rate of 

chloride penetration under field conditions, since they do not incorporate the mass 

transport coefficients that true service life models require.  Bulk diffusion, or ponding, 

tests are necessary to determine apparent chloride diffusion coefficients, but these tests 

are bulky and are lengthy in duration, and as a result are less commonly performed than 

RCPT or similar accelerated tests [Gruber, 2001].      

Asbridge et al. [Asbridge, 2001] examined the influence of MK on chloride 

diffusion kinetics in mortars with varied volume fractions of aggregate, and hence varied 

volume and contribution of the material in the ITZ.  The aggregate used to prepare the 

model mortars was a silicate glass bead supplied by British Optical.  Chloride diffusion 

was measured both under steady-state and non-steady-state conditions.  Steady-state 
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measurements were collected by mounting a 3-mm thick disc in a diffusion cell 

containing 1 M NaCl on one side and 0.035 M NaOH on the other.  The increase in 

chloride concentration in the dilute NaOH compartment was monitored by periodically 

removing 100 µL aliquots for chloride determination.  Non-steady-state measurements 

were made by removing the top surface (cast face) of a cylindrical specimen, sealing the 

remaining three sides, and submerging in a NaCl/NaOH solution for 168 days.  After 

exposure and removal of the wax seal and the outermost 4 mm from the specimen 

diameter, profile grinding was performed in 3-mm increments from the top surface.  

These "grindings" were dried, treated with HNO3, and filtered, and the filtrate was 

analyzed for chloride content.  

In control samples, steady-state diffusion increased with aggregate content, but 

did not vary significantly in samples containing MK.  The same phenomenon was 

observed in the non-steady-state analysis.  Diffusivity and capillary porosity both 

increased markedly in control samples, indicating that the ITZ had a higher overall 

porosity than the bulk paste.  Interestingly, the chloride diffusivity increased sharply at 

aggregate volume fractions above 35%, whereas capillary porosity increased linearly 

with aggregate content.  This suggests some interconnection of higher porosity ITZ 

regions, which results in percolation and facilitates chloride transport.  The use of 10% 

MK as a partial replacement of cement reduced non-steady diffusivity by an order of 

magnitude, and there was little variation regardless of aggregate content.  Capillary 

porosity did increase in MK specimens with increasing amounts of aggregate, but the 

increase was not as great as in control samples.  This supports the hypothesis that the use 

of MK increases permeation path tortuosity and thereby inhibits percolation. 
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Boddy et al. [Boddy, 2001] conducted a similar study, examining both steady- 

and non-steady-state bulk diffusion.  Surface chloride concentration and bulk diffusion 

coefficients were measured in addition to RCPT.  After three years of ponding, the 

diffusion coefficients were still decreasing, as expected, due to further hydration and 

infilling of porosity (Table 2.6).  The best performance at all ages was exhibited by a 

concrete with 0.30 w/cm and 12% MK content.  At just 28 days, this concrete exhibited a 

diffusion coefficient of 2.9 × 10-12 m2/s and allowed 230 Coulombs to pass in the RCPT, 

as compared to measurements of 9.6 × 10-12 m2/s and 2350 Coulombs for the 0.30-w/cm 

control.  Also, at all ages, replacing 8% of the cement in a 0.40 w/cm concrete yielded 

approximately the same diffusivity as a 0.30 w/cm concrete containing no SCMs. 

 

Table 2.6. Bulk diffusion coefficients, C0 (×10-12 m2/s), and  
surface concentration, Da (%), from chloride ponding tests [Boddy, 2001]. 

 

 

Batis et al. [Batis, 2004] selected a local Greek kaolin, calcined it, and tested it in 

mortars containing reinforcing steel.  Batis used this MK to replace either sand or cement, 

and utilized several methods to evaluate corrosion resistance in the presence of a 3.5% 

NaCl solution.  Based on half-cell potential development, mass loss, carbonation depth, 

and corrosion rate determination, Batis concluded that MK made a positive anti-corrosive 

impact.  Replacement with either 20% MK for sand or 10% MK for cement improved 
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corrosion behavior most significantly, while higher replacement levels made no 

contribution. 

Courard et al. [Courard, 2003] measured chloride diffusion via a diffusion cell 

containing saturated Ca(OH)2 solution on one side and 1 M NaCl in saturated Ca(OH)2 

solution on the other.  At periodic intervals, chloride concentration was determined by 

titration of a 20 cm3 sample of the solution.  PC mortars showed a breakthrough time of 

only 13 days (time necessary for initiation of Cl- ion transfer through the sample), while 

5% MK replacement resulted in a breakthrough time of 45 days and an apparent diffusion 

coefficient of 4.71 × 10-12 m2/s.  Specimens containing 20% MK still had not "broken 

through" at the end of one year, and exhibited coefficients lower than 1 × 10-12 m2/s 

(Figure 2.14). 

 
Figure 2.14. Chloride diffusion rates in mortars [Courard, 2003]. 

 
 

2.5.2 Sulfate Resistance 

Another aspect of durability that MK replacement affects is resistance to sulfate 

attack.  This is perhaps the most common and widespread form of chemical attack on 

concrete.  Sulfates are often present in groundwater, particularly when high proportions 
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of clay are present in the soil, or in local concentrations in the vicinity of industrial 

wastes, such as mine tailings, slag heaps, and rubble fills.  Sulfates are a major 

constituent of seawater and may be present in rainwater due to air pollution.  Hazardous 

wastes, agricultural effluent, and sewage may also contain significant concentrations of 

sulfate.  Sulfate attack is a complex process that may involve cracking and expansion of 

concrete as a whole, as well as softening and disintegration of the cement paste [Mindess, 

2003]. 

Based on its ability to refine the pore structure and improve the strength of 

concrete, MK seems a likely candidate for promoting sulfate resistance.  However, MK is 

chemically different from many other SCMs in that it has a very high alumina content.  

The reaction products that MK and CH form are not only C-S-H, but also include 

C4AH13, C3AH6, and C2ASH8.  A clear correlation has been drawn between the tricalcium 

aluminate (C3A) content of a portland cement and its susceptibility to sulfate attack 

[Kurtis, 2000].  If sulfate is present, ettringite is formed from reaction of ingressing 

sulfates, C3A, and monosulfoaluminate.  The formation of ettringite during sulfate attack 

can, but does not always, produce significant volume expansion and can be detrimental to 

concrete life [Mindess, 2003].  In addition, sulfate ions will react with CH to form 

gypsum, which then can lead to a decrease in pore solution pH, destabilization of 

hydration products, and decalcification of the C-S-H.  The net effect of this form of 

chemical attack is loss of adhesion and strength. 

In a 1997 study, Khatib and Wild [Khatib, 1998] examined a commercial MK and 

portland cements with either an intermediate or a high C3A content.  Expansion due to 

sulfate attack was found to decrease systematically with increasing MK content for both 
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cement types (Figure 2.15).  Mortars containing high C3A cement and 0-10% MK 

showed rapid expansion and deterioration between 40 and 70 days of exposure to a 5% 

sodium sulfate solution.  Mortars containing high C3A cement and 15 or 20% MK 

showed a small but sharp expansion during this window, but subsequently stabilized and 

contracted slightly.  For the intermediate C3A content mortars, the expansion process was 

delayed significantly.  Those containing 10% or more MK exhibited essentially no 

expansion, while those containing 0% or 5% did not begin expanding until 150 days and 

did not grow rapidly until approximately 350 days. 

 

 
Figure 2.15. Expansion of MK mortar bars v. sodium sulfate exposure time for (a) high 

and (b) intermediate C3A portland cements [Khatib, 1998]. 
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Courard et al. [Courard, 2003] measured sulfate resistance in a procedure similar 

to the mortar bar method described in ASTM C 1012.  PC mortar prisms experienced 

expansion after only a few days of exposure to sodium sulfate.  After 84 days, variation 

in length was 3.7%.  In contrast, prisms incorporated with 10% MK shrank initially and 

then did not change length significantly in either direction for the duration of the test (one 

year). 

Roy et al. [Roy, 2001] conducted an extensive investigation consisting of 18 

single blends and one control mixture in order to compare MK with FA and SF.  Mortars 

were prepared with replacement levels ranging from 7.5% to 22.5% and at w/cms of 0.30, 

0.36, or 0.40.  Chemical resistance was determined in accordance with ASTM C 267.  

The aggressive chemical environments consisted of various acids (acetic, hydrochloric, 

nitric) and a mixture of magnesium sulfate and sodium sulfate.  Results were quite 

inconsistent, but generally showed SF mixtures to possess the least chemical resistance 

and FA to have the greatest.  MK mixtures fell in between.  These results are somewhat 

questionable, however, as these authors also found chemical resistance to increase with 

decreasing SCM replacement percentage and increasing w/cm.                                  

 

2.5.3 Alkali-Silica Reaction (ASR) 

Alkali-silica reaction occurs between alkalis contained in cement paste and certain 

forms of reactive silica within the aggregate.  Common forms of reactive silica include 

opal, chert, and natural volcanic glass.  These materials have different alkali reactivity 

depending on their degree of crystallinity, crystal size and strain, and internal porosity. 
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The mechanism of ASR is relatively complex, beginning with depolymerization, 

dissolution, repolymerization of an alkali-silica gel product, and swelling of the gel in the 

presence of water.  If a sufficient amount of water is present, the gel volume can increase, 

generating local tensile stresses in the concrete and eventually leading to cracking, which 

can increase the permeability (furthering the reaction) and decrease the strength and 

stiffness of the concrete.  The best protection against ASR is achieved by: 

1. avoiding susceptible aggregate, 
2. reducing water content (to reduce concrete permeability), 
3. specifying a low-alkali cement, and 
4. reducing the overall alkali content of the concrete by limiting the cement 

content. 
 

SCMs, including MK, have been shown to reduce the effects of ASR, as well.  Secondary 

reactions involving SCMs promote refinement and densification of the concrete 

microstructure, reducing permeability and limiting the availability of water.  In addition, 

when SCMs are used as partial replacement for cement, their effect is to dilute the 

cement, which reduces the alkali content of the concrete system and the pH of the pore 

solution, thereby increasing the solubility of calcium and promoting the formation of 

non-expanding gel in place of swelling N(K)-S-H.  Adequate protection is typically 

attained by replacing cement with 15-20% Class F fly ash, 35-40% Class C fly ash2, 10-

15% silica fume, or ~50% slag.  Recent studies involving MK have indicated that 

replacement levels of 10-15% should be effective in mitigating ASR [Aquino, 2001; 

Ramlochan, 2000]. 

                                                
2 Class F fly ashes are produced from bituminous coals, while Class C fly ashes are produced from lignitic 
coals.  Generally a greater amount of Class C fly ash is required to control expansion by ASR.  It is 
believed that the higher CaO content in Class C fly ash results in a C-S-H with a greater C/S which is less 
capable of binding Na+ and K+.  The greater availability of these alkali cations in the pore solution is 
believed to further the alkali-silica reaction. 
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Aquino et al. [Aquino, 2001] compared silica fume and MK in a 2001 study 

utilizing a high-alkali cement and dolomitic limestone aggregate substituted with 5% 

Beltane opal.  Mortars were prepared at a w/cm of 0.56, sand-to-cement ratio of 2.25, and 

10% replacement with SCMs.  Results of ASTM C 1260, the accelerated mortar bar 

method, showed that although the MK specimens initally expanded at a faster rate, the 

silica fume specimens expanded more by the end of the testing period (approximately 

0.25% at 21 days).  The control specimen containing reactive aggregate (Control B) 

expanded the most -- over 0.50% -- while the control prepared with only inert aggregate 

(Control A) did not show significant expansion (0.03%).  These results are shown in 

Figure 2.16. 

 

 
Figure 2.16. Results of ASTM C 1260 [Aquino, 2001]. 

 

Ramlochan et al. [Ramlochan, 2000] examined a MK from Georgia that was 

water-processed to remove impurities.  Concrete prisms contained either of two reactive 

coarse aggregates, reactive sand, cement, and 0-20% SCM.  Three Type I cements with 

varying alkali contents were used.  Similar mortar bars were cast.  These were tested 
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according to ASTM C 1260, while the concrete prisms underwent the two-year 

evaluation prescribed by the Canadian standard CAN/CSA A23.2-14A.  For all 

combinations of aggregate and cement, 15% MK was sufficient to suppress ASR 

expansion to within the specified limit criteria (0.04% for concrete, 0.10% for mortar); 

for concrete prisms containing the Sudbury aggregate, a greywacke-argillite gravel, 10% 

replacement with MK was sufficient (Figure 2.17).  Ramlochan suggested that the 

mechanism by which MK may suppress ASR expansion is entrapment of alkalis by the 

supplementary hydrates and a consequent decrease in the pH of the pore solution.  This 

was supported by sampling pore solutions of paste samples over a two-year period and 

titrating to determine OH- concentration. 

 

 
Figure 2.17. Expansion of concrete prisms containing metakaolin, cement A, and  

(a) Sudbury or (b) Spratt aggregate [Ramlochan, 2000]. 
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2.6 Summary 

There is good agreement in the existing literature that MK improves the properties 

of concrete.  In general, MK has been shown to impart the following benefits: 

o increased compressive strength,  
o increased tensile strength, 
o increased flexural strength, and 
o decreased porosity and permeability (and thus increased resistance to 

chemical attack).   
 

However, MK has also been shown to increase shrinkage and heat evolved during 

hydration, which can be detrimental.  Since it is possible to tailor composition and 

particle size, each MK produced must be evaluated for efficacy in cementitious systems.  

Overall, MK has great promise as an SCM, and the utilization of MK will likely increase 

in the future. 
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Chapter III 

Experimental Methods 

 

3.1 Materials 

The two metakaolins examined in this study, MK235 (Kaorock) and MK349 

(Kaorock F), were provided by Thiele Kaolin Company in Sandersville, Georgia.  These 

metakaolins differ primarily in their fineness, with MK349 having a smaller particle size 

and greater surface area (25.4 vs. 11.1 m2/g).  Both were produced using vertical hearth 

fluid bed calciners, into which the clay was fed at the top and the product collected from 

the bottom.  MK235 was produced from coarse particle sized Cretaceous kaolin, while 

MK349 was produced from fine particle sized Tertiary kaolin.  Photographs and SEM 

micrographs of these metakaolins are shown in Figures 3.1 and 3.2.  Physical 

characteristics, as reported, are shown in Table 3.1.  Particle size distributions, acquired 

at a Horiba Instruments/Retsch Incorporated Particle Technical Seminar, are reported in 

Figure 3.3.  A DTA thermogram of the MKs and the other raw materials used in this 

study is shown in Figure 3.4.  This plot shows a sharp crystallization peak just below 

1000 °C, confirming that the MKs are reactive and were not over-calcined.    
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Figure 3.1. MK235 (left) and MK349 (right). 

 

 
Figure 3.2. Scanning electron micrographs of MK235 (left) and MK349 (right). 

 

Table 3.1. Physical characteristics of the two metakaolin samples examined. 
Characteristics MK235 MK349

Oxide Analysis (%)
SiO2 51.5 52.5
Al2O3 44.7 44.5
TiO2 2.1 1.7
Fe2O3 0.4 0.9

Sedigraph PSD (%)
< 2.0 µm 67 90
< 1.0 µm 41 83
< 0.5 µm 9 53
< 0.2 µm 4 4

Surface Area (m2/g) 11.1 25.4
Bulk Density (lb/ft3) 18 9

                          (kg/m3) 288 139  
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Median (µm) Mean (µm)
235 2.5937 3.9621

349-a 3.6639 4.9095
349-b 3.9806 5.1934

 
Figure 3.3. Particle size data acquired by laser analysis. 
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Figure 3.4. DTA thermogram of raw materials. 
 

 

Commercially available Type I cement, obtained from Lafarge, was used for all 

paste and concrete mixtures.  Results from a chemical oxide analysis of the cement, along 

with the Bogue potential composition, are given in Table 3.2.  For comparative purposes, 



 53

companion mixtures were also prepared using Grace Force 10,000 D silica fume, a dry 

densified microsilica powder.  An oxide analysis is given in Table 3.2.  Aggregates were 

#67 3/4"- (19 mm) MSA crushed granitic gneiss stone and 2.38 fineness modulus natural 

sand, as well as mixed quartz/chert/feldspar alkali-reactive sand from El Paso, Texas for 

the ASR testing (Figure 3.5).  Commercially available superplasticizer, which conforms 

to the ASTM C 494 Type F designation, was also used.  Tap water was used for mixing 

concretes; de-ionized water was used for mortars, pastes, and all chemical solutions. 

 
Table 3.2. Chemical oxide analysis, weight %, for Type I cement and silica fume  

and Bogue potential composition for the cement. 
Component Cement Silica Fume

SiO2 21.26 97.12
Al2O3 4.79 0.01
Fe2O3 3.14 0.05
CaO 64.10 0.37
MgO 2.35 0.28
Na2O 0.02 0.04
K2O 0.36 0.58
TiO2 0.19 0.02

MnO2 0.04 0.04
P2O5 0.03 0.08
SrO 0.03 0.01
BaO 0.04 0.00
SO3 2.63 0.04

Loss on Ignition 1.04 1.36
Insoluble Residue 0.11 N/A

Moisture N/A 0.43

C3S 55.24 N/A
C2S 19.28 N/A
C3A 7.38 N/A

C4AF 9.54 N/A  
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Figure 3.5. Alkali-reactive sand used in ASR test, ASTM C 1260. 

 

3.2 Mixture Proportions 

In this study, the early age properties of fresh concrete and mechanical 

performance and durability of hardened concrete were examined.  All tests were 

conducted using the following four sample groups:  

1. an ordinary cement paste or concrete,  
2. pastes or concrete substituted with 8% MK235 by mass replacement for 

cement,  
3. pastes or concrete substituted with 8% MK349 by mass replacement for 

cement, and 
4. pastes or concrete substituted with 8% silica fume by mass replacement for 

cement.  
  

Pastes, mortars, or concretes were prepared at three water-to-cementitious materials ratios 

(w/cm) -- 0.40, 0.50, and 0.60 -- for each of the above sample groups, unless ASTM tests 

made specific requirement for w/cm.  Concrete raw materials were batched and mixed for 

approximately 15 minutes in accordance with ASTM C 192 using a 2.5 ft3-capacity (71 

L) Lancaster Counter Current Batch mixer, according to the mixture designs given in 

Table 3.3.  The following mixing procedure was used: 

1. Add coarse aggregate to mixer. 
2. Start mixer. 
3. As mixer is spinning, add fine aggregate. 
4. As mixer is spinning, add cement. 
5. As mixer is spinning, add metakaolin or silica fume, if using. 
6. Allow dry materials to mix for 5 minutes. 
7. Add water. 
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8. Add superplasticizer, if using (use small dosages and wait at least 1 minute 
before adding more). 

9. Mix for 3 minutes. 
10. Rest for 3 minutes. 
11. Mix again for 2 minutes. 
12. Perform slump. 
13. Return concrete to mixing bowl and continue mixing for 10 minutes. 

 
Mortars and pastes were mixed with a Hobart mixer per ASTM C 305 for at least five 

minutes after the addition of water.   SCMs were incorporated into mortar mixtures 

concurrently with or immediately following cement -- after aggregates, but prior to water. 

 
Table 3.3. Concrete mixture designs for control mixtures and mixtures  

with SCMs at 8% by weight replacement for cement. 

lb kg lb kg lb kg lb kg lb kg lb/yd3 kg/m3

Control 340 201 1709 1014 1127 668 850 505 -- -- 4026 2388
w/ SCM 340 201 1709 1014 1127 668 782 464 68 41 4026 2388
Control 340 201 1709 1014 1279 759 680 403 -- -- 4008 2377
w/ SCM 340 201 1709 1014 1279 759 626 372 54 31 4008 2377
Control 340 201 1709 1014 1374 815 567 336 -- -- 3990 2366
w/ SCM 340 201 1709 1014 1374 815 522 310 45 26 3990 2366

Nominal 
Density

0.6

w/cm

0.4

0.5

1 yd3 or 1 m3

SCMCementWater Coarse (SSD) Fine (SSD)

 
 

 

 Concrete samples were removed from plastic-covered molds 24 hours after 

casting and placed in a 23 °C fog room for the remainder of the active testing period.  

Mortar and cement paste samples, with the exception of the Vicat samples, were 

demolded at 24 hours and placed in a 23 °C limewater curing tank.  A summary of the 

tests conducted on fresh and hardened samples, their corresponding ASTM standards, 

and the dimensions of samples used for each is shown in Table 3.4. 
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Table 3.4. Tests conducted and cast specimen dimensions. 
Description Designation

in mm
Slump C 143 N/A N/A
Setting time C 191 N/A N/A
Chemical shrinkage N/A N/A N/A
Autogeneous shrinkage N/A N/A N/A

Free shrinkage C 157 1×1×11.25, 
3×3×11.25  

25×25×286, 
76×76×286  

Compressive strength C 39 3×6 76×152
Splitting tensile strength C 496 3×6 76×152
Modulus of rupture C 78 3.5×4.5×16 89×114×406
Modulus of elasticity C 469 6×12 152×305
Chloride permeability C 1202 4×8 102×203
Sulfate resistance C 1012 1×1×11.25 25×25×286
Alkali-silica reaction C 1260 1×1×11.25 25×25×286

Dimensions

 
 

 

3.3 Methods 

3.3.1 Early Age Properties 

Early age properties of pastes and concrete, including slump, unit weight, setting 

time, and heat evolution were measured.  Slump was measured according to ASTM C 

143.  Superplasticizer was used as necessary in order to achieve a target slump of 3-4" 

(76-102 mm) for all mixtures.  Unit weight was calculated based on an average of five 

3×6" (76×152 mm) concrete cylinders.   

Time to initial and final set was measured using a Vicat apparatus, as shown in 

Figure 3.6, according to ASTM C 191.  Three samples were used for each measurement.  

Because pastes made with metakaolin required a higher water content to become 

workable, setting time tests were conducted both at a normal consistency (varying w/cm) 

as determined by ASTM C 187, as prescribed by the standard, and at a constant w/cm of 

0.34.  This was the w/cm necessary for MK349 to reach normal consistency -- the highest 

value determined by ASTM C 187.  In order for the other three experimental groups to 
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approach normal consistency (approximately 15 mm penetration with the Vicat needle), 

these pastes were allowed to remain in the mixing bowl as necessary before placing in the 

ring molds and moist cabinet. 

 
Figure 3.6. Vicat needle apparatus  

[Humboldt Manufacturing - Vicat Consistency Testers]. 
 

 

Heat of hydration was evaluated via isothermal calorimetry using a Thermometric 

TAM Air eight-channel heat conduction calorimeter maintained at 25 °C.  This type of 

instrument measures heat evolved by comparing the temperatures of a sample and an 

inert reference that are held under isothermal conditions.  Heat flow data is collected as a 

function of time.  Pastes contained 200 g total cementitious material and a w/cm of 0.50 

and were mixed for five minutes using a Sunbeam hand mixer on low speed.  In addition 

to 8%, 15% replacement with SCMs was examined.  Polyethylene ampules (Figure 3.7) 

were filled with approximately 20 g of paste, with empty ampules serving as references.  

All experiments were conducted in replicates of three and data was collected for at least 

48 h.  When running multiple mixtures concurrently, the calorimeter and data collection 
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process were started upon addition of water to the first mixture.  As subsequent mixtures 

were produced, the time that water was added was recorded so that these curves could be 

offset when analyzing the data.    

 

 
Figure 3.7 Polyethylene ampules used for isothermal calorimetry. 

 
 
   

Differential thermal analysis may be formally defined as a technique for recording 

the difference in temperature between a substance and a reference material as the two 

specimens are subjected to identical heating or cooling regimes.  Phase changes that 

occur in the sample which lead to the absorption or evolution of heat can be detected 

relative to the inert reference.  The resulting curve, plotted as heat flow versus time or 

temperature, will show peaks representing these phase changes, with the area contained 

in a peak representing enthalpy [Bhadeshia, 2002]. 

Differential thermal analysis was conducted using a Perkin Elmer DTA 7.  

Samples of approximately 54 mg were heated at 10 °C/min, in argon atmosphere, to 1200 

°C.  Pastes contained 8% SCM and a w/cm of 0.40.  Samples were mixed by hand, for at 

least five minutes, using a spatula and a glass plate, and were cast in 1 cm cube molds.  
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The ages examined were 4 h, 8 h, and 24 h.  These were chosen based on the heat of 

hydration curve and corresponded to ages before, at, and after the primary heat peak.  

Samples were also run at seven and 28 days of age.  Samples examined during the first 24 

h of curing were tested as mixed; seven and 28 day samples were demolded after 24 h 

and stored in limewater until ready to test.   

DTA was used to show the temperature ranges over which phase transitions 

occurred and to reveal whether different compounds were present at different ages.  

Perkin Elmer analysis software was used to compare DTA relative peak amplitudes 

(mW), areas (mJ), and enthalpies (J/g).  These were then compared to the corresponding 

values obtained for the decomposition of 54 mg of pure, laboratory grade CH to yield an 

approximate CH content [Sha, 2001].  The interior of the DTA is pictured in Figure 3.8. 

 
 

 
Figure 3.8. DTA samples, in alumina sample cups, inside the instrument. 

 
 

   
Thermogravimetric analysis was used to measure the CH content of pastes 

containing 8% SCMs and w/cm of 0.40.  This technique measures mass change as a 

function of temperature.  In the particular TGA utilized in this study, the sample was 
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suspended, in a titanium foil boat, from a platinum wire hanging in the center of a vertical 

tube furnace.  As it was heated, the mass change was measured from the displacement of 

a counterbalance on the opposite end of the platinum wire, which was thermally isolated 

from the furnace.  Pastes were prepared in the same manner as the DTA pastes and were 

examined at the same ages.  Samples of approximately 450 mg were heated to 900 °C at a 

rate of 10 °C/min in dry air atmosphere.  CH content was determined based on the weight 

loss over the temperature range where CH decomposition was shown, through DTA, to 

occur (400-530 °C) [Poon, 2001; Wild, 1997].  The thermogravimetric analyzer and 

sample boat utilized are shown in Figure 3.9. 

 

 
Figure 3.9. TGA specimen in titanium boat. 

 
    

3.3.2 Shrinkage 

Three types of shrinkage were monitored: chemical, autogenous, and free 

shrinkage.  Briefly, chemical shrinkage is a result of the volume difference between 

reactants and products in a hydrating cement system.  Autogenous shrinkage occurs due 

to the lowering of the cement paste internal relative humidity.  Free, or drying, shrinkage 
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is the contraction that results as a paste, mortar, or concrete loses water to the 

environment.  All shrinkage examinations were conducted at a w/cm of 0.40, and SCMs 

were used at 8% replacement.   

Chemical shrinkage was evaluated on four replicate samples by a method 

modified from Geiker and Knudsen [Geiker, 1982; Knudsen, 1985].  This method 

involves introducing a known volume of cement paste (approximately 10 g, sample 

thickness < 10 mm) into a small glass vial fitted with a graduated pipette, thereby 

allowing volume change to be measured over time (Figure 3.10).  These pastes were 

mixed concurrently with autogenous shrinkage pastes using a Hobart mixer.  Vials were 

capped with rubber stoppers.  Pipettes were inserted through holes in the stoppers, sealed 

with Parafilm, and topped off with hydraulic pump oil to prevent evaporation of water.   

 

 
Figure 3.10. Chemical shrinkage setup. 

 

Autogenous shrinkage was measured on four replicate samples using rigid 

corrugated polyethylene tubes capped on both ends to prevent loss of moisture to the 

environment.  This well-accepted technique is described by Jensen and Hansen [Jensen, 
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1995].  Linear deformation of these tubes was monitored using a comparator, as shown in 

Figure 3.11.  Both chemical and autogenous shrinkage samples were kept in an 

environmental chamber at 20 °C and 50% relative humidity.  Data was recorded daily.  

  
 

 
Figure 3.11. Autogenous shrinkage specimen in dilatometer.  

  

Free, or bulk, shrinkage was measured according to ASTM C 157 on three or four 

replicate samples, for concrete and mortar prisms, respectively.  A sand-to-cement ratio 

of 2.25 was used to cast mortar prisms of 1×1×11.25" (25×25×286 mm), and the mixture 

design shown in Table 3.3 was scaled down to make 3×3×11.25" (76×76×286 mm) 

concrete prisms.  All contained a w/cm of 0.40.  These were removed from molds 24 

hours after casting and allowed to cure in limewater for the remainder of one week.  At 

that point, samples were moved to an environmental chamber at 23 °C and 50% relative 

humidity to evaluate drying shrinkage.  Measurements were recorded on days 1, 3, 5, 7, 

10, and 14, and then every seven days for the following six weeks. 

To further quantify the underlying causes of shrinkage, surface area and porosity 

were measured in controls and samples containing 8% SCMs (w/cm=0.40) at one, seven, 

and 28 days of age.  To stop hydration and prevent carbonation, samples were crushed in 

an ethanol slurry and solvent-exchanged in ethanol for one week.  Samples were then 

dried in an 80 °C oven until constant mass was achieved and stored in a desiccator until 

tested. 
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Nitrogen adsorption was performed on a Coulter SA 3100 using Rapitube flasks 

and approximately 0.3 g of powdered starting material (Figure 3.12).  This technique 

involves dosing the sample with a known amount of nitrogen and measuring the volume 

of adsorbate gas retained by the sample.  This volume is determined based on the residual 

pressure in the sample chamber formed by the molecules that do not adsorb.  The process 

is repeated at the same temperature and at incremental pressures to form an isotherm data 

set.   

Surface area was measured on the adsorption isotherm according to the BET 

(Brunauer, Emmett, Teller) method, while pore size distribution was measured on the 

desorption isotherm according to the BJH (Barrett, Joyner, Halenda) method.  The BET 

surface area is calculated from a multilayer adsorption theory that assumes the first layer 

of molecules adsorbed involves adsorbate-adsorbent energies and subsequent layers are 

governed by the energy of vaporization of this adsorbate-adsorbent interaction.  BET 

specific surface area is measured on the adsorption isotherm in the relative pressure range 

of 0.050 to 0.200.  BJH, measured along the desorption isotherm, accounts for the area of 

pore walls and relates the nitrogen equilibrium relative pressure to the size of the pores 

where capillary condensation takes place [Gregg, 1982].    
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Figure 3.12. Sample flask used for BET and BJH testing. 

 
 
 

3.3.3 Mechanical Properties 

Compressive strength was measured on three replicate samples according to 

ASTM C 39.  Cylinders of 3×6" (76×152 mm) were compressed at a rate of 20,000 

lb/min (1480 N/s).  Splitting tensile strength was also measured on three replicate 3×6" 

(76×152 mm) cylinders loaded at a rate of 5,000 lb/min (370 N/s), as outlined in 

procedure ASTM C 496.  Compression and tension tests were conducted on 1, 3, 7, 28, 

and 90 days of age using an 800,000 lb-capacity (3600 kN) compression machine with a 

digital indicator.  Photographs of these tests are shown in Figure 3.13. 
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Figure 3.13. Compressive (left) and splitting tensile (right)  

strength testing configurations. 
 
 
 

Modulus of rupture was evaluated at ages of 1, 3, 28, and 90 days using a 400,000 

lb-capacity (1800 kN) universal testing machine.  This machine has several loading 

ranges and was set at its lowest capacity to give the best accuracy in these measurements. 

Prisms were cast at 3.5×4.5×16" (89×114×406 mm), and ASTM C 78 (third-point 

loading) was followed, using steel supporting rods and rubber pads, as shown in Figure 

3.14.  Three samples were tested in flexure for each condition.   

 
 

 
Figure 3.14. Third-point loading experimental configuration. 
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Modulus of elasticity was determined per ASTM C 469, using 6×12" (152×304 

mm) cylinders and a compressometer.  This test was conducted on three replicate samples 

per mixture at day 28 of age on the 400,000 lb-capacity (1800 kN) universal load frame.  

Figure 3.15 is an image of the elastic modulus testing setup.   

 

 
Figure 3.15. Method for determining modulus of elasticity in compression. 

 
 

3.3.4 Durability 

The rapid chloride permeability test (RCPT), as described in ASTM C 1202, was 

performed on three replicate specimens.  This test provides an indirect measure of 

chloride permeability by monitoring the charge passed (in Coulombs) through a concrete 

sample.  Samples 4" (102 mm) in diameter and 2" (51 mm) thick were cut from 4×8" 

(102×203 mm) concrete cylinders at 28 days of moist (fog room) curing.  Samples were 

prepared according to the conditioning procedure outlined in ASTM C 1202.  The 

rounded faces were sealed with epoxy and the specimens were placed in a vacuum 

desiccator.  After three hours, the specimens were submerged in de-aerated water and the 
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pump allowed to run for one additional hour.  Finally, air was allowed to re-enter the 

desiccator and the specimens were left to soak for 18 h before being loaded into applied 

voltage cells.  A potential difference of 60 V DC was maintained across the ends of the 

specimens, one of which was immersed in a 3.0% by mass sodium chloride solution, the 

other in a 0.3 N sodium hydroxide solution (both prepared using de-ionized water).  The 

total charge passed, in Coulombs, has been found to be related to the resistance of the 

specimen to chloride ion penetration.  The equipment used, produced by Germann 

Instruments, is shown in Figure 3.16.  

 

 
Figure 3.16.  RCPT apparatus and diffusion cells. 

  

To assess sulfate resistance, six replicate 1×1×11.25" (25×25×286 mm) mortar 

bars were prepared and measured for expansion according to ASTM C 1012.  In addition 

to controls, two sets of samples were cast for each of the three SCMs, one at 8% and one 

at 15% replacement.  ASTM C 1012 was modified slightly by preparing all mortar bars 

using a single w/cm of 0.485 and adding superplasticizer to those mixes with metakaolin 

and silica fume replacements to achieve suitable workability.  Cast samples were placed 
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in metal roasting pans atop plastic sheeting and water heated to 35 °C, covered loosely 

with towels, and stored in a 35 °C oven for 24 h.  Prisms were then demolded and stored 

in limewater for two additional days before initial length measurements were taken and 

exposure initiated.  Samples were exposed to a 33,800 ppm sulfate solution (50 grams of 

Na2SO4 per liter of de-ionized water) at room temperature, as prescribed by the standard, 

and length change was recorded weekly.  Solutions were changed on every measuring 

day.  Mortar prisms and electronic comparator used for length measurements are shown 

in Figure 3.17. 

 

 
Figure 3.17. Mortar prisms (left) and electronic comparator (right). 

 

Additionally, as sulfate attack is more commonly associated with magnesium 

sulfate in the field, ASTM C 1012 was repeated using MgSO4 and the sample matrix 

described above (four replicate samples).  The amount of magnesium sulfate was 

adjusted to maintain an equivalent amount of sulfate (SO4) as in the sodium study. 
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MgSO4 = 120.4 g/mol 
Na2SO4 = 142.1 g/mol 

SO4 = 96.1 g/mol 
 

SO4/Na2SO4 = 96.1/142.1 = 0.676 
 

33.8%/0.676 = 49.98 g/L Na2SO4 
 

(120.4/142.1) × 49.98 = 42.35 g/L MgSO4 
 
 

 Potential for alkali reactivity was measured according to the accelerated mortar 

bar method (ASTM C 1260).  This method has been shown reliable for evaluating the 

effectiveness of SCMs in suppressing ASR [Bérubé, 1995].  As with sulfate testing, a 

single water-to-cementitious materials ratio (0.47) was used and both 8% and 15% 

replacement levels were examined for samples (six replicates) containing SCMs.  

Gradation information for the alkali-reactive sand, which is slightly modified from the 

standard, and mortar mixture designs are shown in Tables 3.5 and 3.6, respectively.  

Mortar bars (1×1×11.25" or 25×25×286 mm) were cast and cured for 24 h in a moist 

cabinet at room temperature, demolded, and then cured for an additional 24 h in de-

ionized water at 80 °C.  Subsequently, they were stored in a 1 N sodium hydroxide 

solution, prepared with de-ionized water, at 80 °C, and length change data was collected 

for 28 days. 

 

Table 3.5. ASR testing, aggregate gradation. 
Sieve Mass retained, g Mass retained, %

#8 132 10
#16 330 25
#30 396 30
#50 396 30

#100 66 5
Total 1320 100  
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Table 3.6. Mortar mixture designs for ASTM C 1260 (ASR test). 
Mixture Water (g) Aggregate (g) Cement (g) SCM (g)
Control 276 1320 587 N/A

8% 276 1320 540 47
15% 276 1320 499 88  
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Chapter IV 

Results and Discussion 

 

4.1 General  

Metakaolin addition yielded concrete with considerably higher strengths and 

improved durability over concretes without SCMs.  Metakaolin incorporation increased 

chemical and autogenous shrinkage of pastes, but decreased free shrinkage of mortars 

and concretes relative to controls.  In general, the finer MK349 appeared to be more 

effective in increasing strength and elastic modulus, while the coarser MK235 was more 

effective in increasing durability, although both were more effective than silica fume.  

Key results regarding early age properties, shrinkage, mechanical properties, and 

durability are presented herein.  

 

4.2 Early Age Properties 

4.2.1 Slump, Superplasticizer Dosage, Unit Weight 

To achieve a target slump of 3-4" (76-102 mm), superplasticizer was required for 

all concrete mixtures, with the exception of the control mixtures at w/cms of 0.50 and 

0.60.  When using SCMs, the necessary superplasticizer dosage increased with 

decreasing w/cm.  Mixtures containing either of the metakaolins required more 

superplasticizer than those containing silica fume.  MK235 typically required 15% more 
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than the amount used with silica fume, and MK349 required 150% more than that value.  

Superplasticizer dosages, in mL, are given in Table 4.1.  Both metakaolins produced 

concrete with unit weights similar to control samples, while silica fume yielded concrete 

of 1.13% lower unit weight than controls on average over the three w/cm. 

 

Table 4.1. Superplasticizer dosage requirements (mL) for 1.5 ft3 concrete. 
0.40 0.50 0.60

Control 15 0 0
MK235 24 13 11
MK349 48 34 20

SF 22 12 9  
 
 

4.2.2 Setting Time 

The water-to-cementitious materials ratios (w/cm) used to produce pastes of 

normal consistency determined by ASTM C 187 are shown in Table 4.2, and the 

measured initial and final setting times for these pastes are shown in Figure 4.1.  In 

general, final set occurred approximately 30 minutes after initial set, which was sooner 

than expected, as others have reported one hour or longer between initial and final set 

[Brooks, 2000; Vu, 2001].  For the normal consistency pastes, the MK235-containing 

samples had longer times to initial and final set than the control sample (initial set at 155 

minutes), while the paste containing the finer MK349 had shorter setting times.  The 

paste containing silica fume had the fastest setting times -- approximately 135 minutes 

for initial set.  These results agree with what has been reported in the literature [Brooks, 

2000; Vu, 2001; Batis, 2004], and are likely related to the higher water contents required 

to achieve normal consistency in MK pastes. 
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The initial and final setting times determined for pastes at a constant w/cm of 0.34 

are shown in Figure 4.2.  This was the w/cm necessary for MK349 to reach normal 

consistency and was the highest value determine by ASTM C 187.  In this series, all 

pastes containing SCMs had shorter times to initial and final set than the control sample 

(initial set at 305 minutes).  Both metakaolin pastes exhibited faster setting times than the 

silica fume pastes, with the paste containing MK349 showing the fastest setting times of 

all four paste types at 145 minutes.  This is likely due to the finer particle size of the 

MK349, which results in a much larger surface area available for reaction and thus a 

faster rate of hydration and setting.  A similar result was found by Moulin [Moulin, 

2001], who found MK pastes to have much shorter setting times than controls when the 

Vicat needle test was conducted at a constant w/cm of 0.40. 

 
 

Table 4.2. Normal consistency of pastes, as determined by ASTM C 187. 
w/c or w/cm

Control 0.27
MK235 0.31
MK349 0.34

SF 0.28  
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Figure 4.1. Vicat initial and final setting times at normal consistency  

(varying w/cm). 
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Figure 4.2. Vicat initial and final setting times at constant w/cm (0.34). 
 
 

4.2.3 Heat of Hydration 

Pastes containing metakaolin showed higher cumulative heat of hydration and 

faster rates of reaction than controls or silica fume pastes.  Similar results were reported 

in the literature [Zhang, 1995; Frías, 2000; Bai, 2002].  Figure 4.3a shows the rate of heat 
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evolution and Figures 4.3b and 4.3c show the cumulative heat evolved -- all are 

normalized per gram of cementitious material.  Silica fume incorporation reduced both 

the rate of heat evolution and the total heat evolved, relative to controls, likely due to the 

removal of cement from the system.  This is supported by the fact that the 15% silica 

fume curve is lower than the 8% curve in both plots.  Further, both silica fume rate curves 

follow the same general profile as the control, with the first peak, corresponding to C3S 

hydration, reaching higher than the second peak (C3A).  This reflects dilution of the 

cement hydration and indicates that there is no secondary reaction occurring due to the 

presence of silica fume at these early ages.   

Interestingly, all four metakaolin curves show the opposite trend: the second peak 

is higher than the first, indicating that some additional exothermic reaction(s) is (are) 

occurring in the MK pastes.  These could be latent hyraulic or pozzolanic reactions, or 

possibly even a delayed dissolution of cement or MK phases.  MK349, the finer material, 

showed the highest rate of heat evolution when used at a replacement level of 15%.  This 

specimen produced approximately 0.68 J/g at its peak, which occurred at just over seven 

hours of age.  This specimen also showed a significantly faster rate of reaction than other 

samples, with a greater slope on both the ascent to and descent from the peak.  This 

resulted in a shift of this curve to the left of the other curves and a full-width half-max 

(FWHM) peak width of only 6.7 h.   

The lowest rate of heat evolution was observed in the 15% silica fume sample, 

which only produced 0.42 J/g.  This sample had a much broader hydration peak, with a 

FWHM of approximately 13.1 h.  These results show that both metakaolins are highly 
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reactive at very early ages, and illustrate the influence of fineness on reaction rate.  These 

results also indicate that the reactions MK is participating in are highly exothermic. 
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Figure 4.3. Isothermal calorimetry results showing (a) rate of heat evolution, (b) short-

term, and (c) 28-day cumulative heat evolved per gram of cementitious material. 
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4.2.4 Calcium Hydroxide Content 

Calcium hydroxide (CH) is a reaction product of C2S and C3S hydration.  Unlike 

C-S-H, CH does not make a significant contribution to strength and can be detrimental to 

concrete durability.  Further, CH occupies a large volume in the cement paste and tends 

to grow in any free space until impeded [Mindess, 2003].  When SCMs containing 

amorphous silica, like metakaolin or silica fume, are introduced, they react rapidly with 

newly forming CH compounds to produce supplementary C-S-H.  In the case of 

metakaolin, as described in Chapter 2, various calcium aluminate compounds are also 

formed.  Reduction of CH content is beneficial because more strength-giving material (C-

S-H) may be produced and less CH can be leached out or reacted with during chemical 

attack [Sha, 2001].  Therefore, quantifying the CH content of a sample gives an 

indication of the progress of the pozzolanic reaction of MK and an approximate 

prediction of concrete durability.  In addition, the relative reactivity of the different MK 

samples may be compared to one another and to silica fume.    

Differential thermal analysis, performed on pastes at varying ages, showed CH 

decomposition to begin between 390 °C and 450 °C for all mixtures (Figures 4.4 and 

4.5).  Figure 4.4 is a thermogram of pure, laboratory grade CH, and is provided to 

illustrate the key parameters examined in DTA analysis.  In general, the younger the 

paste, the earlier this transition began.  The decomposition of CH was complete by 460 

°C to 550 °C, with younger pastes finishing this transition at lower temperatures (Figures 

4.6-4.9).   Pastes made with MK349 as partial replacement for cement showed higher 

onset and ending temperatures than other mixtures, however only slightly.   
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Figure 4.4. DTA thermogram of pure CH. 
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Figure 4.5. DTA onset, peak, and ending temperatures for CH decomposition in pastes at 

varying ages. 
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Figure 4.6. DTA thermogram showing heat flow (endotherms down) versus temperature 

for control specimens at varying ages. 
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Figure 4.6. DTA thermogram showing heat flow (endotherms down) versus temperature 

for MK235 specimens at varying ages. 
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Figure 4.8. DTA thermogram showing heat flow (endotherms down) versus temperature 

for MK349 specimens at varying ages. 
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Figure 4.9. DTA thermogram showing heat flow (endotherms down) versus temperature 

for silica fume specimens at varying ages. 
 
 
 

Relative amounts of CH may be determined by comparing DTA peak parameters 

such as amplitude and area.  From Figures 4.10-4.12, it appears that CH content increased 
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up to 7 d in all samples, but remained fairly constant from 7 d to 28 d in the control and 

SF samples.  In both MK samples, CH content decreased significantly, showing a much 

less pronounced peak at 28 d than at 7 d.  Table 4.3 presents a comparison of peak 

amplitudes, areas, and enthalpies, determined using Perkin Elmer's Pyris Series software, 

for the various mixtures at 24 h, 7 d, and 28 d.   
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Figure 4.10. DTA thermogram showing CH decompostion peak at 24 h of age. 
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Figure 4.11. DTA thermogram showing CH decomposition peak at 7 d of age. 
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Figure 4.12. DTA thermogram showing CH decomposition peak at 28 d of age. 

 
   
 

Table 4.3. DTA peak amplitudes, areas, and enthalpies. 
Onset Peak End Height Area Enthalpy

°C °C °C mW mJ J/g
4 h 392.38 445.63 463.56 4.89 1101.85 20.79
8 h 411.81 461.73 478.16 9.03 1901.27 35.47

Control 24 h 432.61 484.82 500.97 20.06 4920.88 92.85
7 d 437.23 491.97 517.94 26.26 7452.14 135.49
28 d 441.05 488.29 521.12 22.59 6526.72 122.22

4 h 404.16 442.83 464.10 4.08 858.70 15.87
8 h 417.94 460.17 480.21 10.63 2517.56 46.54

MK235 24 h 436.15 486.17 500.89 15.58 3594.30 67.69
7 d 439.14 481.04 504.51 18.85 4497.80 83.91
28 d 442.46 484.23 527.44 13.34 4033.48 75.53

4 h 413.36 447.44 466.45 5.09 1037.70 19.43
8 h 430.28 468.71 489.29 11.50 2576.47 48.07

MK349 24 h 435.67 487.79 505.25 18.82 4790.45 88.55
7 d 442.64 490.14 516.59 18.78 4912.45 91.48
28 d 445.79 499.52 542.56 11.33 4345.01 79.87

4 h 407.30 444.06 464.37 3.99 831.26 15.39
8 h 422.72 463.63 481.40 9.60 2059.56 38.00

SF 24 h 433.70 484.66 501.38 19.70 4864.90 89.59
7 d 442.09 491.04 512.87 24.38 6217.37 116.00
28 d 440.69 488.78 519.69 19.93 5695.61 106.06

Age
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Although DTA testing was performed primarily to determine the ranges where 

CH decomposition occurred (to be used with TGA) and for relative visual comparison of 

peak geometries, it is possible to quantify this data since the same amount of starting 

material (± 1 mg) was used for all tests.  The area of a DTA peak, divided by the sample 

starting mass, is equivalent to the enthalpy associated with the phase transition.  Thus, by 

comparing calculated enthalpies with the enthalpy of the same mass of pure CH, the CH 

content of these samples may be determined.  This technique is used primarily with DSC, 

which gives a more accurate measure of enthalpy, but may be applied to DTA data to 

determine relative amounts of compounds present [Sha, 2001].   

The enthalpy of decomposition for 54 mg of CH was found to be approximately 

1520 J/g by DTA.  It has been reported as 103 kJ/mol, or 1390 J/g [Taylor, 1997].  

Masses of approximately 27 mg and 13.5 mg of pure CH were also run (Table 4.4).  

There was good agreement between the measured enthalpy values, and peak amplitude 

and area scaled fairly linearly with CH mass, indicating that this is a reasonable, though 

perhaps not exceptionally accurate, means of comparison.  The CH contents of the pastes 

examined in this study are shown in Figures 4.13 and 4.14.  Figure 4.13, calculated based 

on enthalpy, gives the most accurate measure of CH content.  Figure 4.14, calculated 

based on peak amplitude, is provided for comparative purposes. 

From this, it is clear that incorporation with MK reduces CH content of cement 

pastes, as expected.  CH is produced by hydration of calcium silicate compounds, which 

forms the first node in the peak of the heat of hydration curve (Figure 4.3a) between six 

and ten hours.  The majority of the CH in an HCP system is produced during this 
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acceleration period.  Hydration continues indefinitely, at a much slower, diffusion-

controlled rate, but is generally over 90% complete by 28 days of age.   

In the case of the control and SF specimens, the C2S and C3S hydration reactions 

continued to produce a significant amount of CH between 1 and 28 days of age.  In the 

MK specimens, however, there was only a slight increase in CH content between 1 and 7 

days age, followed by a decrease between 7 and 28 days.  By the end of the testing 

period, both MK pastes had CH contents of around 5%, versus 7% for SF and 8% for the 

control.  This is a good indication that the pozzolanic reaction of MK continues beyond 

14 days, unlike what has been reported in the literature [Wild, 1996], and that this 

reaction is consuming CH at a rate equal to or faster than the rate of CH production by 

calcium silicate hydration.  Interestingly, CH content of both MK samples was higher 

than that of control and SF samples at 8 h of age.  Beyond 8 h, CH content of MK pastes 

was always lower than in control or SF pastes.  This indicates that the large peak 

observed in isothermal calorimtery curves around 8 h hydration (Figure 4.3a) does not 

correspond to the consumption of CH by MK, but is likely related to acceleration of C3A 

hydration in the presence of MK. 

 
Table 4.4. DTA key parameters for decomposition of pure CH. 

Mass Onset Peak End Height Area Enthalpy
mg °C °C °C mW mJ J/g
54.2 438.76 522.15 551.04 198.22 82145.06 1515.59
27.6 412.65 497.65 523.35 97.86 40768.43 1477.12
12.8 400.14 474.74 495.53 54.46 20037.33 1565.42

µ = 1519.38
σ = 44.27  
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Figure 4.13. CH content of pastes, calculated from enthalpy,  

as measured by DTA. 
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Figure 4.14. CH content of pastes, calculated from peak amplitude,  

as measured by DTA. 
 
 
 

Results from thermogravimetric analyses are presented in Figure 4.15 and 4.16.  

CH contents are shown as percentages and were calculated as the mass loss due to CH 

decomposition relative to the ignited cement weight (4.15) and relative to the total mass 
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loss between 25 °C and 900 °C (4.16).  Each figure contains three determinations of mass 

loss due to CH decomposition.  These were calculated as follows: 

(a) calculated based on the temperatures found through DTA: for 4 h and 8 h 

samples, a range of 400-480 °C was used; for 1-28 d samples, a range of 430-530 

°C was used; 

(b) calculated to include full DTA temperature range (400-530 °C) for samples of all 

ages; 

(c) calculated, for all ages, as the mass loss in the temperature range 400-750 °C, 

which includes CaCO3 decomposition (CH becomes CaCO3 in the presence of 

carbon in the atmosphere).   

These analyses yielded CH contents similar to the DTA calculations, and show the same 

general trend: blending with MK decreases CH content of pastes relative to controls, but 

not until at least 24 h of age.  CH content decreased more rapidly in MK349 pastes than 

in MK235 pastes, though MK235 specimens generally showed the least CH by 28 days 

age.  This indicates that the finer nature of MK349 allows it to initially react faster with 

CH, but that MK235 is equally or more effective at consuming CH overall.  As with DTA 

testing, pastes made with silica fume as partial replacement for cement typically showed 

less CH than controls, but more than MK pastes.  This confirms that SF has pozzolanic 

reactivity, but a slower reaction rate than either of the MKs. 

The CH contents found through DTA and TGA analysis were slightly lower than 

what has been reported in the literature [Poon, 2001; Wild, 1997], but show the same 

trend, with both MK and SF serving to decrease CH content relative to controls.  This 

discrepancy in values is likely due to the different nature of sample preparation necessary 
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for such young pastes.  Most TGA studies examined pastes ranging from three to 90 days 

that were dried prior to testing.  Because complete drying of a paste sample, whether by 

solvent exchange, vacuum, oven, or a combination of these, takes 7-14 days for 

completion [Juenger, 2001], this was not possible in the current study.  As such, pastes 

contained varying amounts of free and bound water depending on their age, which 

resulted in varying amounts of cementitious material comprising their starting masses.  

TGA results were normalized based on ignited cement weight, yielding lower values than 

were expected.           
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Figure 4.15. CH content calculated relative to ignited cement mass for  

(a) specific decomposition temperature range, (b) full range (400 °C - 530 °C),  
and (c) CH and CaCO3 decomposition (400 °C - 750 °C). 
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Figure 4.16. CH content calculated relative to total mass loss for  

(a) specific decomposition temperature range, (b) full range (400 °C - 530 °C),  
and (c) CH and CaCO3 decomposition (400 °C - 750 °C). 
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4.3 Shrinkage 

4.3.1 Chemical Shrinkage 

Chemical shrinkage is a result of the volume difference between reactants and 

products in a hydrating cement system.  As hydration proceeds, the volume occupied by 

the products is smaller than that of the reactants.  Thus, unless additional water is 

supplied from an external source, this chemical shrinkage will result in the formation of 

empty pores within the cement paste microstructure of hardened systems [Bentz, 1999].   

Pastes containing metakaolin showed greater chemical shrinkage than controls or 

silica fume pastes, with the MK235 paste showing the most chemical shrinkage -- 

approximately 8.5 mL/100 g at 28 days of curing (Figure 4.17).  The MK349 paste was 

expected to show the greatest chemical shrinkage because of its high surface area and 

faster hydration reaction rate observed in isothermal calorimetry; the lower chemical 

shrinkage as compared to the coarser MK235 paste could be related to morphology and 

stacking behavior, but further investigation is necessary to isolate the potential causes for 

these observations.  Wild et al. [Wild, 1998] also found chemical shrinkage to increase 

due to MK replacement, reaching a maximum between 10 and 15% replacement.   

At 28 days, control samples had experienced the least chemical shrinkage: 

approximately 4 mL/100 g at 28 days.  However, around seven weeks, silica fume 

samples actually started to expand, and continued to do so for the duration of the four-

month testing period, such that they showed the least overall chemical shrinkage.  This 

expansion is likely due to ASR involving silica fume agglomerations. 
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Figure 4.17. Chemical shrinkage of cement paste at w/cm=0.40, 8% replacement. 

 
 

4.3.2 Autogenous Shrinkage 

Autogenous shrinkage, which occurs due to the lowering of cement paste internal 

relative humidity and is related to capillary porosity, increased with the addition of 

metakaolin.  Both metakaolin samples experienced greater autogenous shrinkage than 

controls, with MK349 pastes showing the most shrinkage (-2100 × 10-6 strain at 28 days).  

This was as expected.  The acceleration of the hydration reaction and the pozzolanic 

reaction of MK will escalate self-desiccation, and due to the finer pore structure of the 

MK pastes, this self-desiccation should induce greater autogenous shrinkage [Brooks, 

2001].   

Because MK349 has a very fine particle size and the most pronounced 

accelerating effect on paste hydration, this result makes sense.  However, since 

autogenous shrinkage has been shown to be related to chemical shrinkage (the empty 

porosity created after final set leads to a reduction in internal relative humidity and a 

measurable autogenous shrinkage of the material [Bentz, 1999]), the autogenous 
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shrinkage would have been expected to be greater in the MK235 sample, which showed 

the greatest chemcial shrinkage.  In fact, the measured autogenous shrinkage value for 

MK235 was significantly lower than for MK349: -750 v. -2100 × 10-6 strain (mm/mm × 

10-6).  Values were -200 and +200 × 10-6 strain for the silica fume and control pastes, 

respectively, as shown in Figure 4.18.   

These results disagree with Brooks et al.'s [Brooks, 2001] finding that MK 

replacement decreased autogenous shrinkage within the first 24 h of curing, although 

Brooks did find MK to increase long-term autogenous shrinkage.  Wild et al. and 

Kinuthia et al. [Wild, 1998; Kinuthia, 2000] both also found autogenous shrinkage to 

increase, reaching a maximum at approximately 10% replacement with MK.  This 

indicates that the values obtained here, at 8% replacement, can be taken as an 

approximate worst case scenario (i.e. this replacement level yields the highest autogenous 

shrinkage that would be observed due to incorporation with these MKs).  Additionally, 

our results correspond to setting times found at a constant w/cm.  That is, pastes 

experiencing greater autogenous shrinkage have shorter times to initial and final set. 
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Figure 4.18. Autogenous deformation of cement paste at  

w/cm=0.40, 8% replacement. 
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4.3.3 Free Shrinkage 

Metakaolin incorporation had varying effects on free shrinkage (Figures 4.19 and 

4.20).  Mortar bars made with MK235 shrank approximately 0.053% during the first two 

weeks of controlled drying.  Overall, these samples showed the least bulk shrinkage over 

the duration of the six-week testing period.  Mortars made with silica fume experienced 

the most shrinkage.  Change in mass was also measured on the same mortar samples, and 

mass loss (Figure 4.19b) followed the same trend as shrinkage.  That is, samples that 

shrank the most also generally lost the most mass during the testing period.   

Concrete prisms made with MK235 also showed the least bulk shrinkage and the 

least mass loss during the first six weeks of drying, while prisms incorporating silica 

fume experienced the most shrinkage and mass loss (Figure 4.20).  The reduction in free 

shrinkage can be attributed to a lower amount of evaporable water, as hydration and 

pozzolanic reaction in MK mortars and concretes consumed a significant amount of the 

free water.  This is supported by the lower mass loss observed in MK specimens relative 

to other mixtures. Both Caldarone et al. [Caldarone, 1994] and Ding and Li [Ding, 2002] 

also found replacement with MK to decrease free shrinkage relative to controls. 

In summary, metakaolin replacement resulted in increased chemical and 

autogenous shrinkage, but reduced free shrinkage.  Brooks et al. [Brooks, 2001] reported 

the same finding.  This suggests that MK mortars and concretes have a lower porosity 

and finer pore structure, which encourages loss of water by self-dessication rather than by 

diffusion to the outside environment.  These results show that even significant increases 

in chemical and autogenous shrinkage may not be detrimental, as they do not lead to 

increases in free shrinkage beyond 24 h as measured by standard tests. 
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Figure 4.19. Free shrinkage of mortar prisms at w/cm=0.40, 8% replacement:  
(a) length change and (b) mass change. 
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Figure 4.20. Free shrinkage of concrete prisms at w/cm=0.40, 8% replacement: 
(a) length change and (b) mass change. 
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4.3.4 Porosity 

Nitrogen adsorption was used to measure BET specific surface area, total 

porosity, and pore size distribution.  Samples tested at one day of age did not show 

significant differences in these quantities, though both pastes containing metakaolin 

showed slightly higher surface areas and total porosities than control and silica fume 

pastes (Figures 4.21 and 4.22).  At 28 days, all samples examined showed increases in 

total porosity.  The control and MK349 pastes also showed an increase in surface area, 

while the MK235 paste showed a decrease.   Tests on silica fume pastes at 28 days age 

could not be performed due to problems with the instrument.   

In terms of pore size distribution, samples containing MK actually showed a 

relatively greater amount of large pores and smaller amount of fine pores than other 

samples at one day of age (Figure 4.23a).  By 28 days, however (Figure 4.23b), MK 

pastes showed a much greater proportion of pores smaller than 10 nm in diameter.  

MK349 pastes had 63% of their porosity in these very fine pores, as compared to 57% 

and 43% for the MK235 and control pastes, respectively.  This is likely due to an infilling 

of porosity and a greater amount of C-S-H being produced by the pozzolanic reaction of 

MK, leading to a greater number of very small pores.  Based on setting time (Figure 4.2) 

and shrinkage data (Figures 4.17 and 4.18), the silica fume pastes would have been 

expected to fall in between, showing more fine porosity than controls but less than MK 

pastes.  Similar findings were reported in the literature [Khatib, 1996]. 



 98

0

5

10

15

20

25

30

Control MK235 MK349 SF

Su
rf

ac
e 

ar
ea

 (s
qu

ar
e 

m
et

er
s 

pe
r g

ra
m

)

1 Day

28 Days

 
Figure 4.21. BET specific surface area of cement pastes containing 8% SCMs. 
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Figure 4.22. Total porosity of cement pastes containing 8% SCMs. 
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Figure 4.23. Pore size distribution of cement pastes containing 8% SCMs at  

(a) one day and (b) 28 days age. 
 

 

4.4 Mechanical Properties 

4.4.1 Compressive Strength 

A significant increase in compressive strength as compared to the ordinary 

concrete controls was observed for both metakaolin samples at 8% replacement for 

cement, with the finer MK349 having a more pronounced effect, particularly at the lower 

w/cm and generally at later ages (i.e., seven days or more).  For all mixtures, the 
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compressive strength increased with decreasing w/cm, as expected.  The maximum 

compressive strength observed was nearly 11,000 psi (75 MPa), which occurred in the 

MK349 concrete with w/cm=0.40 at 28 days.  Strength increases due to MK349 fineness 

were less apparent at higher w/cm likely because ample water was available for hydration 

and particle surface area became less critical.  These results are shown in Figure 4.24.  

An increase in the rate of strength gain for the MK349 was apparent after three days at a 

w/cm of 0.40 and after seven days at 0.50 (Figure 4.25).   

For the w/cm=0.40 concretes, MK349 produced strength increases of 30-50% 

over controls at the same ages (Table 4.5).  MK235 concretes exhibited compressive 

strengths that were 15-30% greater than controls at this water content across all ages.  

These represent increases of approximately 280% and 220%, respectively, over the one-

day control strength, as compared to an increase of only 150% in the control specimens 

by 90 days age.  These results confirm what has been reported in the literature: MK 

produces significant (e.g. 15-50% as compared to controls in this study) compressive 

strength increases in concrete (Table 4.6).   

Wild et al. suggested that there are three elementary factors influencing the 

contribution that MK makes to strength when it partially replaces cement in concrete 

[Wild, 1996].  These are the filler effect, the acceleration of PC hydration, and the 

pozzolanic reaction of MK with CH.  According to Wild et al., the filler effect, which 

results in more efficient paste packing, is immediate, the acceleration of PC hydration has 

maximum impact within the first 24 hours, and the pozzolanic reaction makes the greatest 

contribution to strength somewhere between 7 and 14 days of age.  Based on this, it 

follows that the finer MK349 should have a greater strength-enhancing effect than the 
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coarser MK235.  Its finer particle size would lead to a better packing and filling capacity 

at the aggregate/paste interface, and the increased surface area of the finer material 

should cause a greater acceleration of PC hydration and a faster pozzolanic reaction rate. 

This is supported by the correlation between our measured heat of hydration and 

compressive strength data.  The increased cumulative heat and rate of heat evolution 

observed corresponds to increased strength and an enhanced rate of strength gain in the 

MK349 specimens.  This acceleration effect is illustrated by the rate of compressive 

strength gain plots in Figure 4.25.  Here, particularly at a w/cm of 0.40, MK349 concretes 

gain strength most rapidly, exhibiting approximately 150% of the one-day control 

strength by just three days age.  By contrast, the control specimens did not show a 150% 

increase in strength until 28-90 days age.  This confirms that the increased heat evolved 

during hydration of the MK349 mixtures corresponds to increased compressive strength, 

and suggests an enhanced rate of production of strength-giving aluminate compounds at 

very early ages.      

Silica fume addition resulted in concrete of strength comparable to the control 

mixtures, which was unexpected.  As a result, all of the mixtures containing silica fume 

were recast using a new supply of the material; however, results from this second round 

of testing were similar, although higher early strength was apparent at lower w/cm.  As 

shown in Figure 4.24, results were inconsistent across the three w/cm, but generally 

strength did not develop until later ages.  The cause(s) for these lower-than-anticipated 

strengths with silica fume concrete are not clear, but similar results have recently been 

reported in the metro-Atlanta region [Wolfe, 2004] and in the literature [Curcio, 1998; 

Poon, 2001].  Agglomerations were not readily apparent when examining these samples 
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by optical microscopy, thus it is assumed that adequate silica fume dispersion was 

achieved in these mixtures. 
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Figure 4.24. Average peak compressive strength versus concrete age for  

(a) w/cm=0.40, (b) w/cm=0.50, and (c) w/cm=0.60. 
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Figure 4.25. Rate of compressive strength development, shown as a percent increase over  
1-day control strengths for (a) w/cm=0.40, (b) w/cm=0.50, and (c) w/cm=0.60. 
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Table 4.5. Compressive strength gain for w/cm=0.40 MK-concretes. 
Age 

(Days)
Increase over MK235 

1-day strength (%)
Increase over Control 

1-day strength (%)
Increase over Control 
strength, same age (%)

1 0.0 19.9 19.9
3 73.7 108.2 13.2
7 118.1 161.5 17.6

28 181.5 237.5 30.5
90 167.3 220.5 27.9

Age 
(Days)

Increase over MK349 
1-day strength (%)

Increase over Control 
1-day strength (%)

Increase over Control 
strength, same age (%)

1 0.0 29.6 29.6
3 85.7 140.6 30.8
7 146.6 219.6 43.7

28 183.8 267.8 42.2
90 190.9 277.0 50.4  

 
 
 

Table 4.6. Increases in compressive strength (f'c) over controls due to partial replacement 
with metakolin, as reported/measured at 28 days age. 

Author/Material w/cm % Replacement % f'c Increase over Control
Caldarone et al. (1994) 0.40 10 54

Curcio et al. (1998) 0.33 10 17
Ding & Li (2002) 0.35 10 28
Qian et al. (2001) 0.38 10 69
Vu et al. (2001) 0.36 10 6
Vu et al. (2001) 0.44 10 23

Wild et al. (1996) 0.45 10 13
MK235* 0.40 8 30
MK235* 0.50 8 19
MK349* 0.40 8 42
MK349* 0.50 8 43  

              * present study 
 

 

4.4.2 Splitting Tensile Strength 

Splitting tensile strength results also generally showed increases with metakaolin 

use as compared to ordinary concrete controls.  Splitting tensile strengths for the 

metakaolin mixtures generally ranged between 3 and 4 MPa across the three w/cm at 28 

days (Figure 4.26), which was about 15% greater than the tensile strengths of controls at 

this age.  This is similar to what was reported by Qian et al. [Qian, 2001]: average tensile 
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strength increases over controls were 7% and 16% for MK replacement levels of 5% and 

10%, respectively.  Both MK235 and MK349 improved concrete performance in this test, 

but neither was dominant, and standard deviations for all test results were relatively large.  

The silica fume used did not greatly affect splitting tensile strength, as compared to 

controls.  This type of test is not routinely performed (hence the lack of existing 

literature), both because concrete is relatively weak in tension and because there is not a 

reliable correlation between values of tensile strength measured by splitting tension and 

by direct tension [Mindess, 2003].  
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Figure 4.26. Average peak splitting tensile strength versus concrete age for  

(a) w/cm=0.40, (b) w/cm=0.50, and (c) w/cm=0.60. 
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4.4.3 Modulus of Rupture 

Metakaolin incorporation generally increased flexural strength by 20-40% when 

0.40-w/cm concrete prisms were subjected to four-point bending (Figures 4.27 and 4.28, 

Table 4.7).  There was an increase of 1-2 MPa associated with the use of both 

metakaolins, although there was not a clear trend indicating that one was superior.  

Prisms cast with silica fume as a partial replacement for cement showed a higher 

(approximately 20%) modulus of rupture than the control at w/cm=0.40, though mixtures 

at higher w/cms did not differ from controls.  At w/cm=0.40, MK349 and silica fume 

prisms reached 600 psi (4.1 MPa) at one day of age, control and MK235 prisms at three 

days.  At higher w/cms, MK349 samples reached 600 psi by day three, while other 

mixtures did not reach this value until 28 days of age.  These results bear particular 

relevance to pavement construction and suggest that metakaolin concrete could be used to 

shorten the time needed before pavements may be opened to traffic. 

These results agree with what those of Dubey and Banthia [Dubey, 1998] and 

Qian et al. [Qian, 2001], who both found modulus of rupture to increase when MK was 

used as partial replacement for cement.  Table 4.8 compares these authors' results to those 

found in our evaluation.  Increases in flexural strength in MK-concretes are likely related 

to refinements in pore structure and denser, thinner interfacial transition zones, meaning 

proportionally less of this weaker phase. 
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Figure 4.27. Average peak flexural strength (modulus of rupture) versus concrete age for  

(a) w/cm=0.40, (b) w/cm=0.50, and (c) w/cm=0.60. 
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Figure 4.28. Rate of flexural strength development, shown as a percent increase over  

1-day control strengths for (a) w/cm=0.40, (b) w/cm=0.50, and (c) w/cm=0.60. 
 



 111

Table 4.7. Flexural strength gain for w/cm=0.40 MK-concretes. 
Age 

(Days)
Increase over MK235 

1-day strength (%)
Increase over Control 

1-day strength (%)
Increase over Control 
strength, same age (%)

1 0.0 9.4 9.4
3 53.4 67.7 14.4

28 87.8 105.4 10.1
90 111.6 131.4 24.4

Age 
(Days)

Increase over MK349 
1-day strength (%)

Increase over Control 
1-day strength (%)

Increase over Control 
strength, same age (%)

1 0.0 38.1 38.1
3 28.2 77.0 20.7

28 73.7 139.9 28.6
90 87.5 159.0 39.2  

 
 
 

Table 4.8. Increases in modulus of rupture (MOR) over controls due to partial 
replacement with metakolin, as reported/measured at 28 days age. 

Author/Material w/cm % Replacement % MOR Increase over Control 
Dubey & Banthia (1998) 0.35 10 15

Qian et al. (2001) 0.38 10 32
MK235* 0.40 8 10
MK349* 0.40 8 29  

         * present study 
 

 

4.4.4 Modulus of Elasticity 

Both metakaolins increased concrete's modulus of elasticity over controls, most 

significantly at lower water contents (Figure 4.29).  MK235 and MK349 performed 

approximately the same, resulting in increases of 2-5 GPa (or 11-19%) across the three 

w/cm.  As with compression testing, silica fume addition yielded unexpectedly low 

elastic modulus values.  However, when recast and cured, new silica fume samples 

showed a modulus of elasticity 18-26% higher than controls, which was higher than both 

metakaolin samples, as depicted in Figure 4.16.  The effect was most pronounced at 

w/cm=0.40, with silica fume yielding an elastic modulus of 37 GPa, versus 34 GPa for 

the metakaolins and 29 GPa for controls. 
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Our results are in accord with what has been reported in the literature [Qian, 

2001; Khatib, 2004; Caldarone, 1994].  All of these authors have reported increases in 

elastic modulus associated with MK usage, ranging from 3 to 19%.  Since metakaolin has 

been shown to increase compressive strength and to densify the microstructure, it follows 

that MK should also lead to increased elastic modulus, which is very sensitive to defects 

such  as microcracks and voids.  A summary of the above authors' results, along with our 

measurements, is given in Table 4.9.  From this, the effect of w/cm is quite apparent.  At 

a w/cm=0.50, increases of only 3-6% over controls were observed, while at a w/cm=0.40, 

modulus of elasticity increased approximately 18% over controls.  As with the 

compressive strength data, this shows that the metakaolin has a greater effect at lower 

w/cm.  However, unlike the compressive strength data where the finer material produced 

greater strengths, no apparent effect of metakaolin fineness was observed in the elastic 

modulus data. 
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Figure 4.29. Modulus of elasticity, E, at 28 days of age. 
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Table 4.9. Increases in modulus of elasticity (MOE) due to partial replacement with 
metakolin, as reported/measured at 28 days age. 

Author/Material w/cm % Replacement MOE (GPa) % MOE Increase over Control 
Calderone et al. (1994) 0.40 10 38.9 18

Khatib & Hibbert (2004) 0.50 10 38.0 3
Qian et al. (2001) 0.38 10 33.2 11

MK235* 0.40 8 34.6 19
MK235* 0.50 8 30.7 5
MK349* 0.40 8 34.4 18
MK349* 0.50 8 30.8 6  

* present study 
 

 

4.5 Durability 

4.5.1 Chloride Permeability 

The metakaolin mixtures showed markedly lower permeability than controls, as 

measured by RCPT (Figure 4.30).  For all w/cm, the control samples were considered to 

have a high permeability (above 4000 Coulombs).  MK235 proved to be the most 

effective in reducing charge passed, with values in the low or very low range (below 

2000 Coulombs) for all w/cms.  Concrete cast with MK349 produced RCPT results 

which were only slightly higher than the MK235 samples at 0.40 (14%) and considerably 

higher at 0.60 (47%).  These values ranged from very low at w/cm=0.40 to moderate for 

0.60.  Silica fume addition also reduced permeability as compared to controls, with 

values in the low to moderate range, though the silica fume did not produce reductions in 

permeability as great as either of the metakaolins.  However, there is some uncertainty as 

to whether the RCPT is appropriate for SF-concrete, as the silica fume itself may be 

conductive [Wee, 2000].  

Asbridge et al. [Asbridge, 2001] and Boddy et al. [Boddy, 2001] also found MK 

to significantly decrease resistance to chloride ion penetration.  In Boddy et al.'s study, a 

w/cm=0.30 concrete with 12% MK exhibited an RCPT value of 230 Coulombs at 28 days 
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age, as compared to 2350 Coulombs in the 0.30-w/cm control.  This decrease of 

approximately one order of magnitude was also observed in our evaluation for the 

w/cm=0.40 concrete specimens with 8% MK (590 v. 5020 Coulombs).  These RCPT 

results suggest that blending with MK greatly densifies the matrix, which reduces 

permeability in addition to increasing strength, as observed in MK-concretes.  

Improvements due to MK incorporation are likely achieved primarily in the transition 

zone, which is known to be the most porous and permeable region in a standard concrete 

system. 

The finer material, MK349, was expected to show greater reductions in 

permeability than the coarser MK235 due to its larger surface area, faster reaction rate 

(Figure 4.3a), and more pronounced strength-enhancing effect (Figures 4.24 and 4.25).  

MK235 also produced the greatest amount of chemical shrinkage, which was unexpected.  

These results suggest that MK235's action is somehow different than MK349's, in terms 

of either the type or the rate of reactions in which it is participating.  From Figure 4.17, it 

appears that the three pastes containing SCMs were showing approximately the same 

degree of chemical shrinkage until seven days, when the MK235 began shrinking more 

rapidly.  This implies initiation or acceleration of a reaction in the MK235 system that is 

producing denser reaction compounds which occupy a smaller volume and therefore lead 

to the greater chemical shrinkage from 7 days forward.  From the RCPT data, collected at 

28 days, it seems likely that these denser compounds are better able to inhibit penetration 

and percolation of chloride ions.        
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Figure 4.30. Rapid chloride permeability results at 28 days of age. 

 

 

4.5.2 Sulfate Resistance 

Sulfate resistance was measured by ASTM C 1012, which monitors expansion of 

mortar prisms that are submerged in a 33,800 ppm sulfate solution at room temperature.   

Several months of measurements are reported in Figure 4.31; standard deviations are 

reported in Table A.1 to prevent overcrowding.  Unexpectedly, the 8% MK349 prisms 

began showing expansion first, whereas the control sample would have been expected to 

expand earliest and the most overall.  Images of these prisms at 260 days of age are 

shown in Figure 4.32.  The 8% MK235 prisms have not shown significant expansion yet, 

but are beginning to show signs of deterioration, including cracking near their gage studs, 

due to the sulfate exposure (Figure 4.33).  Due to these unexpected results, the full matrix 

of mortar prisms was recast and a second round of tests started in January, 2005.  



 116

Preliminary results from these new samples are shown in Figure 4.34, with standard 

deviations in Table A.2. 

Mortar prisms were also subjected to MgSO4 exposure, as magnesium sulfate is 

more typically encountered in the field than is sodium sulfate.  Initial results from this 

analysis are shown in Figure 4.35.  Standard deviations are tabulated in A.3.  Although 

ASTM C 1012 provides no strict limit on expansion, it has been suggested that expansion 

of 0.05% to 0.10% at 180 days would indicate moderate sulfate resistance and expansion 

of less than 0.05% at 180 days would indicate high sulfate resistance during ASTM C 

1012 exposure.  Data collection is ongoing, but the results are expected to indicate that 

mixtures resistant to sulfate attack can be produced using either of the metakaolins 

examined or silica fume at either 8% or 15% weight replacement.   

Based on its ability to improve the strength (Figures 4.24 and 4.25) and refine the 

pore structure of concrete (Figures 4.23 and 4.30), MK seems a likely candidate for 

promoting sulfate resistance.  It is suspected that much of MK's action occurs within the 

interfacial transition zone.  This region, located around aggregates, typically has a higher 

porosity, a higher local w/cm, and differing chemical and mineralogical composition than 

the bulk paste.  The ITZ is more permeable and is mechanically weaker than the other 

two phases, and cracks often initiate here, allowing uninhibited penetration of chemical 

solutions and eventually leading to component failure.  Previous results of Khatib and 

Wild [Khatib, 1998] and Roy et al. [Roy, 2001], in addition to our strength and RCPT 

results, suggest the MK should increase resistance to sulfate attack.  Additionally, as CH 

is one of the reactants in sulfate attack and MK has been shown to reduce CH content 

(Figures 4.13-4.16), sulfate resistance should be improved.   
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However, it is possible that the high alumina content of MK could be detrimental.  

If low-sulfate calcium aluminate phases are formed by MK reaction in the cement paste, 

these could react with ingressing sulfates to promote formation of additional ettringite or 

gypsum, leading to volume expansion, cracking, and accelerated penetration of sulfates.  

This being said, it should be noted that the expanding 8% MK349 specimens still showed 

less than 0.10% expansion at 180 days, indicating moderate sulfate resistance.  Further, 

were the alumina compounds in MK349 contributing to the sulfate-induced expansion, 

the 15% MK349 samples would have been expected to show greater expansion than the 

8% samples due to their higher alumina content.  
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Figure 4.31. Mortar bar expansion due to sodium sulfate exposure, w/cm=0.485. 
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Figure 4.32. Images of 8% MK349 mortar prisms after 260 days  

of sodium sulfate exposure. 
 
 
 

 
Figure 4.33. Image of 8% MK235 mortar prisms after 300 days  

of sodium sulfate exposure. 
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Figure 4.34. Mortar bar expansion due to sodium sulfate exposure, w/cm=0.485,  

trial two. 
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Figure 4.35. Mortar bar expansion due to magnesium sulfate exposure, w/cm=0.485.  
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4.5.3 Alkali-Silica Reaction 

ASR test results are shown in Figure 4.36.  These tests were performed using a 

highly reactive aggregate to determine the effect of varying matrix composition on 

expansion by ASR.  According to ASTM C 1260, expansion of less than 0.10% at 14 

days of age indicates acceptable performance, and expansion of greater than 0.20% 

indicates unacceptable performance.  Based upon these criteria, the 15% MK235 mixture 

passed, the 8% MK235 and 15% MK349 specimens fell into the intermediate range 

(showing between 0.10% and 0.20% expansion at 14 days), and all other mixtures failed.  

These results show that both metakaolins reduce expansion due to ASR and to a greater 

extent than silica fume at the same rate of addition.  Additionally, 15% replacement with 

either metakaolin sample produced greater reductions in expansion than 8% replacement, 

and MK235 was more effective than MK349 in mitigating expansion due to ASR. 

These results confirm what has been reported in the literature [Ramlochan, 2000; 

Aquino, 2001].  Although the alkali-reactivity of an aggregate can vary widely, our 

evaluation and both of these studies found 15% replacement with MK sufficient to 

suppress ASR expansion of a highly reactive system to within the specified limit criterion 

(0.10% for mortars).  The mixed quartz/chert/feldspar sand used in our evaluation was 

extremely reactive, which suggests that most alkali-reactive aggregates should require 

less metakaolin to achieve acceptable protection from ASR.  As with other forms of 

chemical attack, this increased resistance to ASR is likely due, for the most part, to 

refinements in the ITZ.  Densification and minimization of this region by secondary 

reaction with MK reduces permeability and limits the availability of water, thereby 

resulting in concrete with enhanced durability.    
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Figure 4.36. Expansion due to alkali-silica reaction, w/cm=0.47. 
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Chapter V 

Conclusions 

 

5.1 Summary of Research Methods and Results 

The performance of two metakaolins, which varied primarily in their surface area 

and particle size distribution, was examined and compared to the performance of ordinary 

(control) and silica fume pastes, mortars, and concretes.  The following conclusions may 

be drawn: 

 

1. With regard to workability and setting time, both metakaolins examined generally 

required more superplasticizer to achieve adequate concrete workability.  The 

finer MK349 caused the greatest reductions in workability, likely due to its larger 

surface area.  Both metakaolins also shortened setting time of pastes by 35-50% 

as compared to controls and 10-30% as compared to companion silica fume 

mixtures at the same w/cm.  Both of these observations indicate that the 

metakaolins are consuming water by absorption, adsorption, or reaction.   

 

2. Isothermal calorimetry illustrated the acceleration effect that metakaolin has on 

cement hydration.  Both MK materials resulted in an increase in the rate of heat 

evolution, and both showed enhanced aluminate peaks, with the finer MK349 
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exhibiting the most pronounced accelerating effect.  Additionally, both 

metakolins were shown, through DTA and TGA, to reduce the CH content of 

pastes, suggesting that concretes admixed with these materials should exhibit 

durability superior to controls.    

 

3. Greater shrinkage, both chemical and autogenous, was observed in mixtures 

containing SCMs as compared to ordinary cement and concrete control mixtures.  

MK235 mixtures showed the greatest chemical shrinkage, while MK349 mixtures 

showed the greatest autogenous shrinkage.  However, free shrinkage decreased 

with the use of both metakolins, with the coarser MK235 resulting in the least 

drying shrinkage. 

 

4. Increased concrete strength, as compared to control and silica fume mixtures, was 

measured for concretes produced with both metakaolins.  The finer metakaolin, 

MK349, yielded the highest compressive, splitting tensile, and flexural strengths.  

Both metakolins also yielded increased elastic moduli relative to controls, 

although the silica fume specimens showed the greatest moduli of the group.  The 

positive influence of the metakaolin fineness was more apparent at lower w/cm: at 

three days, the MK349 specimens exhibited increases in strength of 31%, 14%, 

and 13% over controls for w/cms of 0.40, 0.50, and 0.60, respectively.     

 

5. With regard to the durability tests reported here, concretes produced with 

metakaolin at 8% by mass cement exhibited reduced permeability, as measured by 
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RCPT.  The coarser metakaolin produced greater reductions in permeability, 

yielding Coulomb values in the very low or low range for all w/cms.  In 

accelerated alkali-silica tests (ASTM C 1260), the best performance was achieved 

in mortars with 15% by weight replacement of cement with MK235.  Tests to 

determine resistance to sulfate-induced expansion are incomplete and are 

presently inconclusive. 

 

Both metakaolins examined led to increases in strength, elastic modulus, and resistance to 

chemical attack, as compared to controls.  In general, the finer MK349 seemed more 

effective in enhancing concrete mechanical performance, while the coarser MK235 

seemed more effective in improving concrete durability. 

 

5.2 Recommendations for Use of Thiele Metkaolins 

Based on this research, both metakaolins have great potential to improve the 

mechanical and durability properties of concrete.  In general, replacement of 8% of the 

cement in a system should produce significant strength increases and provide adequate 

protection against corrosion, alkali-silica reaction, and sulfate attack.  Replacement with 

15% MK results in even greater decreases in permeability and superior resistance to 

chemical penetration. 

 

5.3 Future Testing 

Although characterization of these metakaolins was quite comprehensive, future 

testing might be desirable to pin down the underlying mechanisms of metakaolin's action.  
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In terms of early age properties, results were clear and consistent, with the finer 

metakaolin showing higher reactivity.  This is supported by MK349's higher heat of 

hydration, shorter setting time, larger reduction in workability, and greater rate of 

strength gain.  However, as both metakaolins required a higher dosage of superplasticizer 

than silica fume mixtures, ternary blends containing metakaolin and other SCMs 

(including fly ash, which is known to improve workability) should be investigated to 

develop mixture designs with improved strength and durability, which can be made 

workable at lower cost (i.e., lower superplasticizer dosage).  Blending with fly ash should 

also help reduce the heat evolved during early hydration. 

Because shrinkage results were inconsistent and somewhat confusing, further 

evaluation is necessary to better understand the shrinkage behavior of metakaolin 

concretes.  ASTM C 157, the only of the evaluations performed on concrete specimens, 

does not capture shrinkage within the first 24 h of curing.  To assess this very early 

shrinkage, concrete prisms should be cast with embedded waterproof, low-modulus strain 

gauges.  This will allow shrinkage in concrete samples to be measured from the time of 

setting.  Shrinkage-reducing chemical admixtures might also be examined.       

Strength increases were observed in metakaolin mixtures across all ages and 

w/cm, as compared to control and silica fume mixtures.  An increase in the rate of 

compressive strength gain for the MK349 was evident after three days at a w/cm of 0.40 

and after seven days at 0.50 (Figure 4.25), but the underlying mechanism is not readily 

apparent.  Calorimetry experiments performed for longer periods, perhaps up to 28 days, 

may provide additional understanding.  Flexural testing results bear particular relevance 
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to pavement construction and suggest that metakaolin concrete could be used to shorten 

the time needed before pavements may be opened to traffic. 

In terms of durability, more long-term data is necessary to predict how 

metakaolin-concretes will perform under field conditions.  Resistance to damage from 

freeze-thaw cycling should be investigated.  Although metakolins greatly reduced the 

charge passed in rapid chloride permeability testing, long-term ponding tests may be 

desirable to fully understand the extent of corrosion resistance that metakaolin can offer.  

Sulfate testing should continue until mortar bars have expanded beyond the length of the 

comparator.  ASR should be further evaluated via the long-term concrete prism test 

outlined in ASTM C 1293.  This should paint a more accurate picture of the reaction, as it 

will include effects of the interfacial transition zone.  Additionally, ternary blending with 

fly ash or slag might be explored as a means for mitigating ASR, as 15% replacement 

with metakaolin is expensive and gives poor workability.    

 

 



 

 

 

Appendix 

 

Table A.1. Mortar bar expansion due to sodium sulfate exposure (ASTM C 1012), 
averages and standard deviations. 

Age 
(Days) Mean Standard 

Deviation
Age 

(Days) Mean Standard 
Deviation

Age 
(Days) Mean Standard 

Deviation
Age 

(Days) Mean Standard 
Deviation

7 0.008 0.020 7 -0.034 0.019 7 -0.012 0.028 7 0.006 0.002
14 0.000 0.018 14 -0.025 0.017 14 -0.011 0.027 14 0.012 0.005
21 0.003 0.019 21 -0.024 0.017 21 -0.005 0.028 21 0.035 0.028
28 0.008 0.017 28 -0.019 0.016 28 -0.006 0.027 28 0.008 0.002
42 0.001 0.018 42 -0.021 0.018 42 -0.008 0.027 42 0.006 0.004
56 0.005 0.018 56 -0.019 0.018 56 0.001 0.029 56 0.014 0.003
77 0.009 0.018 77 -0.014 0.019 84 0.004 0.029 77 0.015 0.005
98 0.010 0.018 91 -0.012 0.017 91 0.002 0.032 91 0.013 0.005
105 0.009 0.021 105 -0.019 0.033 111 0.014 0.029 102 0.021 0.004
123 0.014 0.018 116 -0.012 0.017 173 0.034 0.039 105 0.021 0.009
185 0.023 0.017 178 -0.007 0.015 198 0.079 0.097 164 0.033 0.006
210 0.028 0.015 203 -0.006 0.016 229 0.144 0.157 189 0.036 0.008
241 0.032 0.017 234 -0.004 0.016 237 0.130 0.107 220 0.032 0.007
256 0.029 0.017 249 -0.011 0.014 244 0.103 0.071 235 0.025 0.007
272 0.036 0.018 265 -0.008 0.014 250 0.218 0.201 251 0.025 0.008
304 0.047 0.035 297 -0.001 0.014 260 0.329 0.345 283 0.028 0.008

Age 
(Days) Mean Standard 

Deviation
Age 

(Days) Mean Standard 
Deviation

Age 
(Days) Mean Standard 

Deviation
7 0.010 0.004 7 0.002 0.008 7 0.006 0.002
14 0.010 0.003 14 0.015 0.005 14 -0.007 0.001
21 0.007 0.004 21 0.016 0.002 21 0.002 0.002
28 0.011 0.007 28 0.017 0.004 28 0.006 0.002
42 0.021 0.018 42 0.035 0.007 42 0.011 0.010
56 0.018 0.005 56 0.023 0.004 63 0.011 0.002
77 0.014 0.006 77 0.020 0.007 77 -- --
91 0.006 0.012 91 0.018 0.010 90 0.018 0.003
97 0.021 0.006 95 0.028 0.002 91 0.015 0.008

105 0.023 0.007 105 0.026 0.007 105 0.020 0.003
159 0.018 0.007 157 0.026 0.004 152 0.030 0.003
184 0.020 0.006 182 0.027 0.004 177 0.031 0.004
215 0.021 0.006 213 0.027 0.004 208 0.024 0.004
230 0.010 0.006 228 0.018 0.004 223 0.018 0.003
246 0.014 0.005 244 0.022 0.004 239 0.021 0.003
278 0.017 0.006 276 0.026 0.004 271 0.025 0.004

Control 8% MK235 8% MK349 8% SF

15% MK235 15% MK349 15% SF
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Table A.2. Mortar bar expansion due to sodium sulfate exposure (ASTM C 1012), 
averages and standard deviations, trial two. 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation Mean Standard 

Deviation
7 0.008 0.001 0.005 0.001 0.015 0.001 0.015 0.001
14 0.010 0.001 0.010 0.002 0.014 0.001 0.016 0.001
21 0.014 0.001 0.012 0.001 -- -- -- --
28 0.014 0.001 0.009 0.002 0.011 0.001 -- --
35 -- -- -- -- 0.015 0.001 0.020 0.001
42 -- -- 0.011 0.002 0.016 0.001 0.022 0.001
49 0.014 0.001 -- -- -- -- -- --

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation

7 0.010 0.001 0.012 0.001 0.014 0.001
14 0.013 0.001 0.012 0.000 0.014 0.001
21 0.012 0.001 0.011 0.001 -- --
28 0.013 0.001 0.012 0.001 0.012 0.001
35 -- -- -- -- 0.015 0.001
42 0.017 0.001 0.016 0.001 0.016 0.001
49 -- -- -- -- -- --

ControlAge 
(Days)

8% MK235 8% MK349

Age 
(Days)

8% SF

15% MK235 15% MK349 15% SF

 
 
 
 

Table A.3. Mortar bar expansion due to magnesium sulfate exposure (ASTM C 1012), 
averages and standard deviations.  

Age 
(Days) Mean Standard 

Deviation
Age 

(Days) Mean Standard 
Deviation

Age 
(Days) Mean Standard 

Deviation
Age 

(Days) Mean Standard 
Deviation

7 0.004 0.001 7 0.001 0.003 7 0.008 0.002 7 0.003 0.001
12 0.003 0.001 14 0.003 0.003 14 0.003 0.002 12 0.006 0.001
21 0.007 0.001 21 0.006 0.002 19 0.003 0.002 21 0.006 0.002
28 0.010 0.001 28 0.000 0.002 28 0.006 0.002 28 0.005 0.001
42 0.011 0.002 42 0.002 0.002 49 0.004 0.001 42 0.008 0.000
63 0.008 0.002 63 0.005 0.003 65 0.013 0.001 63 0.007 0.001
84 0.010 0.002 84 0.002 0.002 84 0.004 0.001 84 0.007 0.001
112 0.012 0.003 112 0.003 0.003 112 0.009 0.001 112 0.003 0.001
140 140 0.007 0.003 140 0.010 0.002 140

Age 
(Days) Mean Standard 

Deviation
Age 

(Days) Mean Standard 
Deviation

Age 
(Days) Mean Standard 

Deviation
7 0.002 0.007 7 0.008 0.002 7 0.003 0.001
14 0.012 0.003 14 0.008 0.002 12 0.004 0.001
21 0.015 0.004 19 0.009 0.002 21 0.004 0.001
28 0.013 0.003 28 0.011 0.003 28 0.006 0.000
42 0.014 0.003 49 0.014 0.001 42 0.006 0.001
63 0.016 0.003 65 0.017 0.002 63 0.001 0.000
84 0.013 0.003 84 0.010 0.002 84 0.004 0.001

112 0.013 0.005 112 0.013 0.002 112 0.004 0.000
140 0.019 0.007 140 0.015 0.002 140

15% MK235 15% MK349 15% SF

Control 8% MK235 8% MK349 8% SF
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